Outer scaling of rough and smooth wall boundary layers under adverse pressure gradient conditions

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Ralph J. Volino , Michael P. Schultz
{"title":"Outer scaling of rough and smooth wall boundary layers under adverse pressure gradient conditions","authors":"Ralph J. Volino ,&nbsp;Michael P. Schultz","doi":"10.1016/j.ijheatfluidflow.2025.109821","DOIUrl":null,"url":null,"abstract":"<div><div>Experiments were conducted in adverse pressure gradient (APG) boundary layers over rough and smooth walls. Cases were considered with various pressure gradient strengths and upstream conditions. Profiles of mean velocity and turbulence quantities were measured at multiple streamwise stations to document the response of the flow to the APG. The data suggest that an APG causes attached turbulent eddies to become detached, and motivates the proposal of a new scaling to collapse the data in the outer part of the boundary layer. The distance from the wall is normalized as <em>y*=(y − δ*)/(</em>δ<em>-</em>δ<em>*</em>), where <em>δ</em> and <em>δ</em>* are the boundary layer thickness and displacement thickness, respectively. Velocity is scaled using the friction velocity at the start of the APG region. Data from all cases in which an APG is imposed on a canonical zero pressure gradient (ZPG) boundary layer show good collapse of the mean velocity and Reynolds stress profiles with the new scaling. For cases in which an APG followed directly after a favorable pressure gradient (FPG), the initial development of the boundary layer was changed, but after some distance the new scaling again collapsed the profiles.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"114 ","pages":"Article 109821"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000797","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Experiments were conducted in adverse pressure gradient (APG) boundary layers over rough and smooth walls. Cases were considered with various pressure gradient strengths and upstream conditions. Profiles of mean velocity and turbulence quantities were measured at multiple streamwise stations to document the response of the flow to the APG. The data suggest that an APG causes attached turbulent eddies to become detached, and motivates the proposal of a new scaling to collapse the data in the outer part of the boundary layer. The distance from the wall is normalized as y*=(y − δ*)/(δ-δ*), where δ and δ* are the boundary layer thickness and displacement thickness, respectively. Velocity is scaled using the friction velocity at the start of the APG region. Data from all cases in which an APG is imposed on a canonical zero pressure gradient (ZPG) boundary layer show good collapse of the mean velocity and Reynolds stress profiles with the new scaling. For cases in which an APG followed directly after a favorable pressure gradient (FPG), the initial development of the boundary layer was changed, but after some distance the new scaling again collapsed the profiles.
逆压梯度条件下粗糙和光滑壁面边界层的外结垢
在粗糙和光滑壁面上的逆压梯度边界层中进行了实验。考虑了不同压力梯度强度和上游条件下的情况。在多个流向站点测量了平均流速和湍流量的剖面,以记录气流对APG的响应。数据表明,APG导致附着的湍流涡流分离,并激发了一种新的尺度来压缩边界层外部的数据。与壁面的距离归一化为y*=(y -δ*) /(δ-δ*),其中δ和δ*分别为边界层厚度和位移厚度。速度使用APG区域开始时的摩擦速度进行缩放。在标准零压力梯度(ZPG)边界层上施加APG的所有情况下的数据都表明,在新的标度下,平均速度和雷诺数应力曲线都发生了良好的崩塌。在有利压力梯度(FPG)后直接出现APG的情况下,边界层的初始发展发生改变,但在一段距离后,新的结垢再次使剖面塌陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信