Ultrasonic replacement of natural aging: Potential strategies for improving the color, antioxidant activity, and volatile compound profile of astragalus mead
Jianfeng Wang , Xiangjin Kong , Yuqi Han , Faisal Eudes Sam , Jixin Li , Zhengmei Qi , Yumei Jiang
{"title":"Ultrasonic replacement of natural aging: Potential strategies for improving the color, antioxidant activity, and volatile compound profile of astragalus mead","authors":"Jianfeng Wang , Xiangjin Kong , Yuqi Han , Faisal Eudes Sam , Jixin Li , Zhengmei Qi , Yumei Jiang","doi":"10.1016/j.ultsonch.2025.107319","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for natural and functional beverages has driven research aimed at improving the quality of herbal meads. This study investigates the use of non-thermal processing methods, ultrasonic, microwave, and high hydrostatic pressure processing, as alternatives to traditional natural aging for improving the physicochemical properties, antioxidant activity, color stability, and volatile compound profile of astragalus mead. Response surface methodology was employed to optimize fermentation conditions, which yielded the highest flavonoid content and sensory quality at an impregnation time of 12 h, an impregnation temperature of 10 °C, and a fermentation temperature of 20 °C. Among the processing methods evaluated (natural aging, ultrasound, microwave irradiation, and high hydrostatic pressure), ultrasound treatment resulted in the most significant improvements. Specifically, it increased total phenol content by 7.22 %, total flavonoid content by 9.41 %, and antioxidant capacity by 65.43 %. Volatile compound analysis also revealed a 191.30 % increase in ester content, significantly enhancing floral and fruity notes. Sensory analysis using quantitative descriptive analysis, partial least squares discriminant analysis, and weighted gene co-expression network analysis confirmed the efficacy of ultrasound, with ethyl caprylate identified as a key aroma contributor. These findings suggest that ultrasound is an effective non-thermal processing technique for improving the aging process and overall quality of astragalus mead. This study provides valuable insights for the industrial application of non-thermal processing technologies in astragalus mead production.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"116 ","pages":"Article 107319"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725000987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for natural and functional beverages has driven research aimed at improving the quality of herbal meads. This study investigates the use of non-thermal processing methods, ultrasonic, microwave, and high hydrostatic pressure processing, as alternatives to traditional natural aging for improving the physicochemical properties, antioxidant activity, color stability, and volatile compound profile of astragalus mead. Response surface methodology was employed to optimize fermentation conditions, which yielded the highest flavonoid content and sensory quality at an impregnation time of 12 h, an impregnation temperature of 10 °C, and a fermentation temperature of 20 °C. Among the processing methods evaluated (natural aging, ultrasound, microwave irradiation, and high hydrostatic pressure), ultrasound treatment resulted in the most significant improvements. Specifically, it increased total phenol content by 7.22 %, total flavonoid content by 9.41 %, and antioxidant capacity by 65.43 %. Volatile compound analysis also revealed a 191.30 % increase in ester content, significantly enhancing floral and fruity notes. Sensory analysis using quantitative descriptive analysis, partial least squares discriminant analysis, and weighted gene co-expression network analysis confirmed the efficacy of ultrasound, with ethyl caprylate identified as a key aroma contributor. These findings suggest that ultrasound is an effective non-thermal processing technique for improving the aging process and overall quality of astragalus mead. This study provides valuable insights for the industrial application of non-thermal processing technologies in astragalus mead production.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.