Alan John Varghese , Zhen Zhang , George Em Karniadakis
{"title":"SympGNNs: Symplectic Graph Neural Networks for identifying high-dimensional Hamiltonian systems and node classification","authors":"Alan John Varghese , Zhen Zhang , George Em Karniadakis","doi":"10.1016/j.neunet.2025.107397","DOIUrl":null,"url":null,"abstract":"<div><div>Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combine symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: (i) G-SympGNN and (ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107397"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500276X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combine symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: (i) G-SympGNN and (ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.