SympGNNs: Symplectic Graph Neural Networks for identifying high-dimensional Hamiltonian systems and node classification

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alan John Varghese , Zhen Zhang , George Em Karniadakis
{"title":"SympGNNs: Symplectic Graph Neural Networks for identifying high-dimensional Hamiltonian systems and node classification","authors":"Alan John Varghese ,&nbsp;Zhen Zhang ,&nbsp;George Em Karniadakis","doi":"10.1016/j.neunet.2025.107397","DOIUrl":null,"url":null,"abstract":"<div><div>Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combine symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: (i) G-SympGNN and (ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107397"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500276X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combine symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: (i) G-SympGNN and (ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信