Adaptive node-level weighted learning for directed graph neural network

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jincheng Huang , Xiaofeng Zhu
{"title":"Adaptive node-level weighted learning for directed graph neural network","authors":"Jincheng Huang ,&nbsp;Xiaofeng Zhu","doi":"10.1016/j.neunet.2025.107393","DOIUrl":null,"url":null,"abstract":"<div><div>Directed graph neural networks (DGNNs) have garnered increasing interest, yet few studies have focused on node-level representation in directed graphs. In this paper, we argue that different nodes rely on neighbor information from different directions. Furthermore, the commonly used mean aggregation for in-neighbor sets and out-neighbor sets may lose expressive power for certain nodes. To achieve this, first, we estimate the homophily of each node to neighbors in different directions by extending the Dirichlet energy. This approach allows us to assign larger weights to neighbors in directions exhibiting higher homophilic ratios for any node. Second, we introduce out-degree and in-degree information in the learning of weights to avoid the problem of weak expressive power ability of mean aggregation. Moreover, we theoretically demonstrate that our method enhances the expressive ability of directed graphs. Extensive experiments on seven real-world datasets demonstrate that our method outperforms state-of-the-art approaches in both node classification and link prediction tasks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107393"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002722","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Directed graph neural networks (DGNNs) have garnered increasing interest, yet few studies have focused on node-level representation in directed graphs. In this paper, we argue that different nodes rely on neighbor information from different directions. Furthermore, the commonly used mean aggregation for in-neighbor sets and out-neighbor sets may lose expressive power for certain nodes. To achieve this, first, we estimate the homophily of each node to neighbors in different directions by extending the Dirichlet energy. This approach allows us to assign larger weights to neighbors in directions exhibiting higher homophilic ratios for any node. Second, we introduce out-degree and in-degree information in the learning of weights to avoid the problem of weak expressive power ability of mean aggregation. Moreover, we theoretically demonstrate that our method enhances the expressive ability of directed graphs. Extensive experiments on seven real-world datasets demonstrate that our method outperforms state-of-the-art approaches in both node classification and link prediction tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信