{"title":"Adaptive node-level weighted learning for directed graph neural network","authors":"Jincheng Huang , Xiaofeng Zhu","doi":"10.1016/j.neunet.2025.107393","DOIUrl":null,"url":null,"abstract":"<div><div>Directed graph neural networks (DGNNs) have garnered increasing interest, yet few studies have focused on node-level representation in directed graphs. In this paper, we argue that different nodes rely on neighbor information from different directions. Furthermore, the commonly used mean aggregation for in-neighbor sets and out-neighbor sets may lose expressive power for certain nodes. To achieve this, first, we estimate the homophily of each node to neighbors in different directions by extending the Dirichlet energy. This approach allows us to assign larger weights to neighbors in directions exhibiting higher homophilic ratios for any node. Second, we introduce out-degree and in-degree information in the learning of weights to avoid the problem of weak expressive power ability of mean aggregation. Moreover, we theoretically demonstrate that our method enhances the expressive ability of directed graphs. Extensive experiments on seven real-world datasets demonstrate that our method outperforms state-of-the-art approaches in both node classification and link prediction tasks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107393"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002722","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Directed graph neural networks (DGNNs) have garnered increasing interest, yet few studies have focused on node-level representation in directed graphs. In this paper, we argue that different nodes rely on neighbor information from different directions. Furthermore, the commonly used mean aggregation for in-neighbor sets and out-neighbor sets may lose expressive power for certain nodes. To achieve this, first, we estimate the homophily of each node to neighbors in different directions by extending the Dirichlet energy. This approach allows us to assign larger weights to neighbors in directions exhibiting higher homophilic ratios for any node. Second, we introduce out-degree and in-degree information in the learning of weights to avoid the problem of weak expressive power ability of mean aggregation. Moreover, we theoretically demonstrate that our method enhances the expressive ability of directed graphs. Extensive experiments on seven real-world datasets demonstrate that our method outperforms state-of-the-art approaches in both node classification and link prediction tasks.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.