Deformation-invariant neural network and its applications in distorted image restoration and analysis

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Han Zhang , Qiguang Chen , Lok Ming Lui
{"title":"Deformation-invariant neural network and its applications in distorted image restoration and analysis","authors":"Han Zhang ,&nbsp;Qiguang Chen ,&nbsp;Lok Ming Lui","doi":"10.1016/j.neunet.2025.107378","DOIUrl":null,"url":null,"abstract":"<div><div>Images degraded by geometric distortions pose a significant challenge to imaging and computer vision tasks such as object recognition. Deep learning-based imaging models usually fail to give accurate performance for geometrically distorted images. In this paper, we propose the deformation-invariant neural network (DINN), a framework to address the problem of imaging tasks for geometrically distorted images. The DINN outputs consistent latent features for images that are geometrically distorted but represent the same underlying object or scene. The idea of DINN is to incorporate a simple component, called the quasiconformal transformer network (QCTN), into other existing deep networks for imaging tasks. The QCTN is a deep neural network that outputs a quasiconformal map, which can be used to transform a geometrically distorted image into an improved version that is closer to the distribution of natural or good images. It first outputs a Beltrami coefficient, which measures the quasiconformality of the output deformation map. By controlling the Beltrami coefficient, the local geometric distortion under the quasiconformal mapping can be controlled. The QCTN is lightweight and simple, which can be readily integrated into other existing deep neural networks to enhance their performance. Leveraging our framework, we have developed an image classification network that achieves accurate classification of distorted images. Our proposed framework has been applied to restore geometrically distorted images by atmospheric turbulence and water turbulence. DINN outperforms existing GAN-based restoration methods under these scenarios, demonstrating the effectiveness of the proposed framework. Additionally, we apply our proposed framework to the 1-1 verification of human face images under atmospheric turbulence and achieve satisfactory performance, further demonstrating the efficacy of our approach.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107378"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002576","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Images degraded by geometric distortions pose a significant challenge to imaging and computer vision tasks such as object recognition. Deep learning-based imaging models usually fail to give accurate performance for geometrically distorted images. In this paper, we propose the deformation-invariant neural network (DINN), a framework to address the problem of imaging tasks for geometrically distorted images. The DINN outputs consistent latent features for images that are geometrically distorted but represent the same underlying object or scene. The idea of DINN is to incorporate a simple component, called the quasiconformal transformer network (QCTN), into other existing deep networks for imaging tasks. The QCTN is a deep neural network that outputs a quasiconformal map, which can be used to transform a geometrically distorted image into an improved version that is closer to the distribution of natural or good images. It first outputs a Beltrami coefficient, which measures the quasiconformality of the output deformation map. By controlling the Beltrami coefficient, the local geometric distortion under the quasiconformal mapping can be controlled. The QCTN is lightweight and simple, which can be readily integrated into other existing deep neural networks to enhance their performance. Leveraging our framework, we have developed an image classification network that achieves accurate classification of distorted images. Our proposed framework has been applied to restore geometrically distorted images by atmospheric turbulence and water turbulence. DINN outperforms existing GAN-based restoration methods under these scenarios, demonstrating the effectiveness of the proposed framework. Additionally, we apply our proposed framework to the 1-1 verification of human face images under atmospheric turbulence and achieve satisfactory performance, further demonstrating the efficacy of our approach.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信