Enabling scale and rotation invariance in convolutional neural networks with retina like transformation

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiahong Zhang , Guoqi Li , Qiaoyi Su , Lihong Cao , Yonghong Tian , Bo Xu
{"title":"Enabling scale and rotation invariance in convolutional neural networks with retina like transformation","authors":"Jiahong Zhang ,&nbsp;Guoqi Li ,&nbsp;Qiaoyi Su ,&nbsp;Lihong Cao ,&nbsp;Yonghong Tian ,&nbsp;Bo Xu","doi":"10.1016/j.neunet.2025.107395","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional convolutional neural networks (CNNs) struggle with scale and rotation transformations, resulting in reduced performance on transformed images. Previous research focused on designing specific CNN modules to extract transformation-invariant features. However, these methods lack versatility and are not adaptable to a wide range of scenarios. Drawing inspiration from human visual invariance, we propose a novel brain-inspired approach to tackle the invariance problem in CNNs. If we consider a CNN as the visual cortex, we have the potential to design an “eye” that exhibits transformation invariance, allowing CNNs to perceive the world consistently. Therefore, we propose a retina module and then integrate it into CNNs to create transformation-invariant CNNs (TICNN), achieving scale and rotation invariance. The retina module comprises a retina-like transformation and a transformation-aware neural network (TANN). The retina-like transformation supports flexible image transformations, while the TANN regulates these transformations for scaling and rotation. Specifically, we propose a reference-based training method (RBTM) where the retina module learns to align input images with a reference scale and rotation, thereby achieving invariance. Furthermore, we provide mathematical substantiation for the retina module to confirm its feasibility. Experimental results also demonstrate that our method outperforms existing methods in recognizing images with scale and rotation variations. The code will be released at <span><span>https://github.com/JiaHongZ/TICNN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107395"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002746","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional convolutional neural networks (CNNs) struggle with scale and rotation transformations, resulting in reduced performance on transformed images. Previous research focused on designing specific CNN modules to extract transformation-invariant features. However, these methods lack versatility and are not adaptable to a wide range of scenarios. Drawing inspiration from human visual invariance, we propose a novel brain-inspired approach to tackle the invariance problem in CNNs. If we consider a CNN as the visual cortex, we have the potential to design an “eye” that exhibits transformation invariance, allowing CNNs to perceive the world consistently. Therefore, we propose a retina module and then integrate it into CNNs to create transformation-invariant CNNs (TICNN), achieving scale and rotation invariance. The retina module comprises a retina-like transformation and a transformation-aware neural network (TANN). The retina-like transformation supports flexible image transformations, while the TANN regulates these transformations for scaling and rotation. Specifically, we propose a reference-based training method (RBTM) where the retina module learns to align input images with a reference scale and rotation, thereby achieving invariance. Furthermore, we provide mathematical substantiation for the retina module to confirm its feasibility. Experimental results also demonstrate that our method outperforms existing methods in recognizing images with scale and rotation variations. The code will be released at https://github.com/JiaHongZ/TICNN.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信