Investigation of biodegradable microparticle release and environmental accumulation in Poly(butylene succinate) degradation under UV and non-UV aging conditions
Peng Cui , Jiamin Wang , Lu Mao , Yuan Gao , Shuang Li , Yan Liu , Haimei Mao , Munan Qiu , Wenqi Zou , Xia Gao
{"title":"Investigation of biodegradable microparticle release and environmental accumulation in Poly(butylene succinate) degradation under UV and non-UV aging conditions","authors":"Peng Cui , Jiamin Wang , Lu Mao , Yuan Gao , Shuang Li , Yan Liu , Haimei Mao , Munan Qiu , Wenqi Zou , Xia Gao","doi":"10.1016/j.polymdegradstab.2025.111323","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the release behavior of biodegradable microparticles and their environmental accumulation during the degradation of poly(butylene succinate) (PBS) through enzymatic hydrolysis and UV aging. By employing laser diffraction and image counting techniques, we monitored the real-time release of biodegradable microparticles during PBS degradation. The findings reveal that during enzymatic degradation, non-UV-aged PBS releases a significant number of microparticles, peaking at 4569 particles per 50 µL on the fifth day, with 97% of these particles subsequently degraded. In contrast, UV-aged PBS shows a markedly slower degradation rate. For samples pretreated with UV for 30 days, the number of released microparticles peaks at 1856 particles per 50 µL, and even after the complete disintegration of the primary material, approximately 52% of these microparticles remain undegraded. UV aging initially accelerated surface degradation due to photochemical reactions but ultimately reduced overall degradation efficiency by inducing crosslinking, resulting in persistent microparticle accumulation. Analytical techniques such as Scanning Electron Microscopy (SEM), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (<sup>1</sup>HNMR ), and X-ray Photoelectron Spectroscopy (XPS) were used to analyze structural changes and degradation products, revealing surface chemical transformations and their impact on microparticle release. This research underscores the importance of comprehensive environmental assessments of biodegradable plastics, particularly focusing on the dynamic release of microparticles during degradation. The findings provide a critical scientific basis for developing safer biodegradable materials and contribute to effectively addressing plastic pollution issues.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"237 ","pages":"Article 111323"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025001533","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the release behavior of biodegradable microparticles and their environmental accumulation during the degradation of poly(butylene succinate) (PBS) through enzymatic hydrolysis and UV aging. By employing laser diffraction and image counting techniques, we monitored the real-time release of biodegradable microparticles during PBS degradation. The findings reveal that during enzymatic degradation, non-UV-aged PBS releases a significant number of microparticles, peaking at 4569 particles per 50 µL on the fifth day, with 97% of these particles subsequently degraded. In contrast, UV-aged PBS shows a markedly slower degradation rate. For samples pretreated with UV for 30 days, the number of released microparticles peaks at 1856 particles per 50 µL, and even after the complete disintegration of the primary material, approximately 52% of these microparticles remain undegraded. UV aging initially accelerated surface degradation due to photochemical reactions but ultimately reduced overall degradation efficiency by inducing crosslinking, resulting in persistent microparticle accumulation. Analytical techniques such as Scanning Electron Microscopy (SEM), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (1HNMR ), and X-ray Photoelectron Spectroscopy (XPS) were used to analyze structural changes and degradation products, revealing surface chemical transformations and their impact on microparticle release. This research underscores the importance of comprehensive environmental assessments of biodegradable plastics, particularly focusing on the dynamic release of microparticles during degradation. The findings provide a critical scientific basis for developing safer biodegradable materials and contribute to effectively addressing plastic pollution issues.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.