{"title":"Pressure steam ageing of silica filled silicone rubber : Degradation mechanisms","authors":"Manar Ramram , Lénaïk Belec , Jean-François Chailan , François Perseil Rouillard , François-Xavier Perrin","doi":"10.1016/j.polymdegradstab.2025.111332","DOIUrl":null,"url":null,"abstract":"<div><div>Silica filled silicone rubber compound was hydrothermally aged under a complex condition consisting of a succession of vacuum phases at 80 °C and exposure to pressure steam at 134 °C. The results from various physico-chemical analysis techniques indicate that hydrothermal ageing has significantly affected both the polymer network and the polymer-filler interfaces, allowing the identification of the primary degradation mechanisms. Solvent swelling and solid <sup>29</sup>Si CP-MAS NMR analysis evinced that hydrolytic scission reactions predominate in the early stages of ageing and are compensated by recombination reactions for the subsequent cycles.</div><div>The volatilization of cyclic oligomers, resulting from the backbiting reaction, led to polymer loss and an associated increase in silica content within the silicone rubber compound, as confirmed by FTIR and TGA analyses. Significant changes occurred at the polymer-filler interfaces during the first few hundred cycles, including the formation of covalent bonds at the silica surface, replacing the physical interactions. These findings were further supported by solid-state <sup>29</sup>Si CP-MAS NMR analysis and ammonia-modified swelling experiments.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"237 ","pages":"Article 111332"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025001624","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Silica filled silicone rubber compound was hydrothermally aged under a complex condition consisting of a succession of vacuum phases at 80 °C and exposure to pressure steam at 134 °C. The results from various physico-chemical analysis techniques indicate that hydrothermal ageing has significantly affected both the polymer network and the polymer-filler interfaces, allowing the identification of the primary degradation mechanisms. Solvent swelling and solid 29Si CP-MAS NMR analysis evinced that hydrolytic scission reactions predominate in the early stages of ageing and are compensated by recombination reactions for the subsequent cycles.
The volatilization of cyclic oligomers, resulting from the backbiting reaction, led to polymer loss and an associated increase in silica content within the silicone rubber compound, as confirmed by FTIR and TGA analyses. Significant changes occurred at the polymer-filler interfaces during the first few hundred cycles, including the formation of covalent bonds at the silica surface, replacing the physical interactions. These findings were further supported by solid-state 29Si CP-MAS NMR analysis and ammonia-modified swelling experiments.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.