Study on internal circulation patterns and heat transfer characteristics of gas-liquid Taylor flow in a gradually expanding microchannel

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Fuxing Jia , Haibin Zhang , Changliang Wang , Shanwei Li , Min Wei
{"title":"Study on internal circulation patterns and heat transfer characteristics of gas-liquid Taylor flow in a gradually expanding microchannel","authors":"Fuxing Jia ,&nbsp;Haibin Zhang ,&nbsp;Changliang Wang ,&nbsp;Shanwei Li ,&nbsp;Min Wei","doi":"10.1016/j.cep.2025.110283","DOIUrl":null,"url":null,"abstract":"<div><div>The internal circulation within the gas-liquid Taylor flow slug promotes radial fluid mixing, which is a key factor in enhancing heat and mass transfer rates. The present study investigates numerically the internal circulation patterns of gas-liquid Taylor flow slugs in a gradually expanding microchannel and their effect on heat transfer characteristics. The flow field structure and heat transfer performance of slugs in straight and gradually expanding channels under different flow velocity conditions are compared and analyzed. The results show that secondary vortices within the slug significantly enhance the mixing in the liquid phase, thus improving local heat transfer efficiency. In the expanding channel, the gradual increase in hydraulic diameter promotes the formation and development of secondary vortices, leading to the further intensification of heat transfer. Under these conditions, the secondary circulation zone significantly impacts the main circulation zone, and its contribution to strengthening heat transfer cannot be ignored. This study provides a theoretical basis for optimizing the design of microchannel heat sinks with broad engineering applications, particularly in device cooling and efficient heat dissipation.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110283"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001321","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The internal circulation within the gas-liquid Taylor flow slug promotes radial fluid mixing, which is a key factor in enhancing heat and mass transfer rates. The present study investigates numerically the internal circulation patterns of gas-liquid Taylor flow slugs in a gradually expanding microchannel and their effect on heat transfer characteristics. The flow field structure and heat transfer performance of slugs in straight and gradually expanding channels under different flow velocity conditions are compared and analyzed. The results show that secondary vortices within the slug significantly enhance the mixing in the liquid phase, thus improving local heat transfer efficiency. In the expanding channel, the gradual increase in hydraulic diameter promotes the formation and development of secondary vortices, leading to the further intensification of heat transfer. Under these conditions, the secondary circulation zone significantly impacts the main circulation zone, and its contribution to strengthening heat transfer cannot be ignored. This study provides a theoretical basis for optimizing the design of microchannel heat sinks with broad engineering applications, particularly in device cooling and efficient heat dissipation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信