Explicit forms of interpolating cubic splines and data smoothing

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Csaba Török , Juraj Hudák , Viktor Pristaš , Lubomir Antoni
{"title":"Explicit forms of interpolating cubic splines and data smoothing","authors":"Csaba Török ,&nbsp;Juraj Hudák ,&nbsp;Viktor Pristaš ,&nbsp;Lubomir Antoni","doi":"10.1016/j.amc.2025.129411","DOIUrl":null,"url":null,"abstract":"<div><div>We express the interpolating cubic splines of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in their new, explicit forms. We construct the desired forms, the spline's Hermitian and B-spline representations for both equidistant and arbitrary nodes. During this process we demonstrate an innovative way to compute the inverse of a special class of tridiagonal matrices. Afterward, we propose the corresponding interpolating spline based linear regression models with easily interpretable coefficients suitable for smoothing data of complex structures.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129411"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001389","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We express the interpolating cubic splines of class C2 in their new, explicit forms. We construct the desired forms, the spline's Hermitian and B-spline representations for both equidistant and arbitrary nodes. During this process we demonstrate an innovative way to compute the inverse of a special class of tridiagonal matrices. Afterward, we propose the corresponding interpolating spline based linear regression models with easily interpretable coefficients suitable for smoothing data of complex structures.
三次样条插值和数据平滑的显式形式
我们用新的显式形式来表示C2类的插值三次样条。我们构造了所需的形式,样条的厄米和b样条表示为等距和任意节点。在此过程中,我们展示了一种计算一类特殊的三对角矩阵逆的创新方法。然后,我们提出了相应的插值样条线性回归模型,该模型具有易于解释的系数,适用于复杂结构的平滑数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信