Linear phase property of speech envelope tracking response in Heschl’s gyrus and superior temporal gyrus

IF 3.2 2区 心理学 Q1 BEHAVIORAL SCIENCES
Yaoyao Wang , Dengchang Wu , Nai Ding , Jiajie Zou , Yuhan Lu , Yuehui Ma , Xing Zhang , Wenyuan Yu , Kang Wang
{"title":"Linear phase property of speech envelope tracking response in Heschl’s gyrus and superior temporal gyrus","authors":"Yaoyao Wang ,&nbsp;Dengchang Wu ,&nbsp;Nai Ding ,&nbsp;Jiajie Zou ,&nbsp;Yuhan Lu ,&nbsp;Yuehui Ma ,&nbsp;Xing Zhang ,&nbsp;Wenyuan Yu ,&nbsp;Kang Wang","doi":"10.1016/j.cortex.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding how the brain tracks speech during listening remains a challenge. The phase resetting hypothesis proposes that the envelope-tracking response is generated by resetting the phase of intrinsic nonlinear neural oscillations, whereas the evoked response hypothesis proposes that the envelope-tracking response is the linear superposition of transient responses evoked by a sequence of acoustic events in speech. Recent studies have demonstrated a linear phase property of the envelope-tracking response, supporting the evoked response hypothesis. However, the cortical regions aligning with the evoked response hypothesis remain unclear. To address this question, we directly recorded from the cortex using stereo-electroencephalography (SEEG) in nineteen epilepsy patients as they listened to natural speech, and we investigated whether the phase lag between the speech envelope and neural activity linearly changes across frequency. We found that the linear phase property of low-frequency (LF) (.5–40 Hz) envelope tracking was widely observed in Heschl’s gyrus (HG) and superior temporal gyrus (STG), with additional sparser distribution in insula, postcentral gyrus, and precentral gyrus. Furthermore, the latency of LF envelope-tracking responses derived from phase–frequency curve exhibited an increase gradient along HG and in the posterior-to-anterior direction in STG. Our findings suggest that auditory cortex can track speech envelope in line with the evoked response hypothesis.</div></div>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"186 ","pages":"Pages 1-10"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cortex","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010945225000796","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how the brain tracks speech during listening remains a challenge. The phase resetting hypothesis proposes that the envelope-tracking response is generated by resetting the phase of intrinsic nonlinear neural oscillations, whereas the evoked response hypothesis proposes that the envelope-tracking response is the linear superposition of transient responses evoked by a sequence of acoustic events in speech. Recent studies have demonstrated a linear phase property of the envelope-tracking response, supporting the evoked response hypothesis. However, the cortical regions aligning with the evoked response hypothesis remain unclear. To address this question, we directly recorded from the cortex using stereo-electroencephalography (SEEG) in nineteen epilepsy patients as they listened to natural speech, and we investigated whether the phase lag between the speech envelope and neural activity linearly changes across frequency. We found that the linear phase property of low-frequency (LF) (.5–40 Hz) envelope tracking was widely observed in Heschl’s gyrus (HG) and superior temporal gyrus (STG), with additional sparser distribution in insula, postcentral gyrus, and precentral gyrus. Furthermore, the latency of LF envelope-tracking responses derived from phase–frequency curve exhibited an increase gradient along HG and in the posterior-to-anterior direction in STG. Our findings suggest that auditory cortex can track speech envelope in line with the evoked response hypothesis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cortex
Cortex 医学-行为科学
CiteScore
7.00
自引率
5.60%
发文量
250
审稿时长
74 days
期刊介绍: CORTEX is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信