In silico maturation of DNA aptamer against the prostate-specific antigen (PSA) and kinetic analysis

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chi-Ping Huang , Wen-Pin Hu , Wei Yang , Zheng-Jie Lee , Wen-Yih Chen
{"title":"In silico maturation of DNA aptamer against the prostate-specific antigen (PSA) and kinetic analysis","authors":"Chi-Ping Huang ,&nbsp;Wen-Pin Hu ,&nbsp;Wei Yang ,&nbsp;Zheng-Jie Lee ,&nbsp;Wen-Yih Chen","doi":"10.1016/j.bbrc.2025.151638","DOIUrl":null,"url":null,"abstract":"<div><div>The detection of the prostate-specific antigen (PSA) serves as a critical marker for the diagnosis and follow-up of prostate cancer. DNA aptamers targeting PSA have been successfully screened using the systematic evolution of ligands by exponential enrichment (SELEX) technique, complemented by in silico maturation processes. In this study, we aim to optimize a truncated aptamer, denoted as TA87, through computational methods and to analyze potential aptamer candidates in the aptamer-PSA interactions. The PSA antibody, aptamer ΔPSap4#5, and an identified but unpublished aptamer, PSAG221, were evaluated in quartz crystal microbalance (QCM) experiments alongside aptamers derived from TA87. The Tanimoto similarity score and the ZDOCK program, coupled with the ZRANK scoring function, were adopted to assess the secondary structure of single-point mutants of TA87 and their binding interactions with PSA, respectively. Detailed analyses of the aptamer-protein complexes were conducted using molecular dynamics (MD) simulations. Mutations TA87M24 and TA87M49, along with PSAG221 and TA87, showed superior ZDOCK scores compared to ΔPSap4#5. MD simulations further suggested that PSAG221 aptamer might offer enhanced binding to PSA over ΔPSap4#5. The affinity constant (<em>K</em><sub><em>D</em></sub>) values for the antibody, ΔPSap4#5, PSAG221, TA87, TA87M24, and TA87M49 with PSA were determined through QCM measurements to be 0.35, 0.33, 0.35, 0.56, 0.45, and 0.51 μM<sup>−1</sup>, respectively. The experimental results showed that the truncated aptamers, TA87, and the two mutations, TA87M24 and TA87M49, did not demonstrate superior PSA binding affinity. Aptamer PSAG221 demonstrated performance comparable to that of the antibody, although slightly inferior to ΔPSap4#5. The aptamer PSAG221 reported in this study could be an alternative probe for developing future PSA aptasensor platforms.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"759 ","pages":"Article 151638"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25003523","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of the prostate-specific antigen (PSA) serves as a critical marker for the diagnosis and follow-up of prostate cancer. DNA aptamers targeting PSA have been successfully screened using the systematic evolution of ligands by exponential enrichment (SELEX) technique, complemented by in silico maturation processes. In this study, we aim to optimize a truncated aptamer, denoted as TA87, through computational methods and to analyze potential aptamer candidates in the aptamer-PSA interactions. The PSA antibody, aptamer ΔPSap4#5, and an identified but unpublished aptamer, PSAG221, were evaluated in quartz crystal microbalance (QCM) experiments alongside aptamers derived from TA87. The Tanimoto similarity score and the ZDOCK program, coupled with the ZRANK scoring function, were adopted to assess the secondary structure of single-point mutants of TA87 and their binding interactions with PSA, respectively. Detailed analyses of the aptamer-protein complexes were conducted using molecular dynamics (MD) simulations. Mutations TA87M24 and TA87M49, along with PSAG221 and TA87, showed superior ZDOCK scores compared to ΔPSap4#5. MD simulations further suggested that PSAG221 aptamer might offer enhanced binding to PSA over ΔPSap4#5. The affinity constant (KD) values for the antibody, ΔPSap4#5, PSAG221, TA87, TA87M24, and TA87M49 with PSA were determined through QCM measurements to be 0.35, 0.33, 0.35, 0.56, 0.45, and 0.51 μM−1, respectively. The experimental results showed that the truncated aptamers, TA87, and the two mutations, TA87M24 and TA87M49, did not demonstrate superior PSA binding affinity. Aptamer PSAG221 demonstrated performance comparable to that of the antibody, although slightly inferior to ΔPSap4#5. The aptamer PSAG221 reported in this study could be an alternative probe for developing future PSA aptasensor platforms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信