Jianxin Shi , Jinhao Chen , Yuandong Wang , Tao Feng , Zhen Yang , Tianyu Wo
{"title":"Behavior-Pred: A semantic-enhanced trajectory pre-training framework for motion forecasting","authors":"Jianxin Shi , Jinhao Chen , Yuandong Wang , Tao Feng , Zhen Yang , Tianyu Wo","doi":"10.1016/j.inffus.2025.103086","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the future movements of dynamic traffic agents is crucial for autonomous systems. Effectively understanding the behavioral patterns of traffic agents is key to accurately predicting their future movements.</div><div>Inspired by the success of the pre-training and fine-tuning paradigm in artificial intelligence, we develop a semantic-enhanced trajectory pre-training framework for motion forecasting in the autonomous driving domain, named <strong>Behavior-Pred</strong>. In detail, we design two kinds of tasks during the pre-training phase: fine-grained reconstruction and coarse-grained contrastive tasks, to learn a better representation of both historical and future behaviors, as well as their pattern consistency. In fine-grained reconstruction learning, we utilize a time-dimensional masking strategy based on the timestep level, which reserves historical and future patterns compared to agent-based masking. In coarse-grained contrastive learning, we design a similarity-based loss function to grasp the relationship/consistency between history patterns and the future. Overall, Behavior-Pred learns more comprehensive behavioral semantics via multi-granularity pre-training tasks. Experimental results demonstrate that our framework outperforms various baselines.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"120 ","pages":"Article 103086"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001599","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the future movements of dynamic traffic agents is crucial for autonomous systems. Effectively understanding the behavioral patterns of traffic agents is key to accurately predicting their future movements.
Inspired by the success of the pre-training and fine-tuning paradigm in artificial intelligence, we develop a semantic-enhanced trajectory pre-training framework for motion forecasting in the autonomous driving domain, named Behavior-Pred. In detail, we design two kinds of tasks during the pre-training phase: fine-grained reconstruction and coarse-grained contrastive tasks, to learn a better representation of both historical and future behaviors, as well as their pattern consistency. In fine-grained reconstruction learning, we utilize a time-dimensional masking strategy based on the timestep level, which reserves historical and future patterns compared to agent-based masking. In coarse-grained contrastive learning, we design a similarity-based loss function to grasp the relationship/consistency between history patterns and the future. Overall, Behavior-Pred learns more comprehensive behavioral semantics via multi-granularity pre-training tasks. Experimental results demonstrate that our framework outperforms various baselines.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.