Han-Sol Lee , Yeongoh Ko , Juhoon Back , Keum-Shik Hong , Chang-Sei Kim
{"title":"A double-loop robust position and speed control of an electromagnetic actuator against nonlinear model uncertainties","authors":"Han-Sol Lee , Yeongoh Ko , Juhoon Back , Keum-Shik Hong , Chang-Sei Kim","doi":"10.1016/j.conengprac.2025.106318","DOIUrl":null,"url":null,"abstract":"<div><div>Electromagnetic actuation (EMA) has been a reliable and powerful approach for the wireless manipulation of a small-sized robot in recent years. EMA with controllers for microrobot manipulation has been validated in various studies and demonstrated high precision in static environments. Nevertheless, from a control perspective, challenges remain in effectively compensating for lumped disturbances, which include nonlinear model uncertainties and unpredictable dynamics of target objects, thereby ensuring reliable performance in practical applications. In this article, we propose a double-loop robust controller to address these challenges. The proposed control architecture consists of an outer-loop sliding mode control (SMC) and an inner-loop disturbance observer (DOB). This controller functions as a force compensator, where the SMC provides primary feedback control for the motion of the magnetic object, and the DOB estimates and compensates for lumped disturbance forces. The controller's parameters and driving performance were comprehensively analyzed through dynamic simulations of the target object. The potential for practical applications was validated through experiments. The results demonstrated that position control accuracy reached 0.4 mm at a rated speed within 1 mm/s, showing a 71 % improvement compared to conventional control. Additionally, the comparative speed control performance could achieve a maximum speed of 11.4 mm/s resulting in relative effectiveness compared to other control approaches.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"160 ","pages":"Article 106318"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000814","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic actuation (EMA) has been a reliable and powerful approach for the wireless manipulation of a small-sized robot in recent years. EMA with controllers for microrobot manipulation has been validated in various studies and demonstrated high precision in static environments. Nevertheless, from a control perspective, challenges remain in effectively compensating for lumped disturbances, which include nonlinear model uncertainties and unpredictable dynamics of target objects, thereby ensuring reliable performance in practical applications. In this article, we propose a double-loop robust controller to address these challenges. The proposed control architecture consists of an outer-loop sliding mode control (SMC) and an inner-loop disturbance observer (DOB). This controller functions as a force compensator, where the SMC provides primary feedback control for the motion of the magnetic object, and the DOB estimates and compensates for lumped disturbance forces. The controller's parameters and driving performance were comprehensively analyzed through dynamic simulations of the target object. The potential for practical applications was validated through experiments. The results demonstrated that position control accuracy reached 0.4 mm at a rated speed within 1 mm/s, showing a 71 % improvement compared to conventional control. Additionally, the comparative speed control performance could achieve a maximum speed of 11.4 mm/s resulting in relative effectiveness compared to other control approaches.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.