A novel automated soft sensor design tool for industrial applications based on machine learning

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Liang Cao , Jianping Su , Emilio Conde , Lim C. Siang , Yankai Cao , Bhushan Gopaluni
{"title":"A novel automated soft sensor design tool for industrial applications based on machine learning","authors":"Liang Cao ,&nbsp;Jianping Su ,&nbsp;Emilio Conde ,&nbsp;Lim C. Siang ,&nbsp;Yankai Cao ,&nbsp;Bhushan Gopaluni","doi":"10.1016/j.conengprac.2025.106322","DOIUrl":null,"url":null,"abstract":"<div><div>In modern industrial processes, real-time monitoring and control of key quality variables are crucial but challenging due to measurement limitations and process complexities. Traditional methods for developing soft sensor models are not only time-consuming and labor-intensive but also require substantial expertise in machine learning, and often lack user-friendly interfaces, thereby limiting their accessibility to engineers in the field. To address these issues, this paper introduces an easy-to-use, open and efficient automated soft sensor design tool called Soft Sensor Manager. The Soft Sensor Manager incorporates advanced supervised, semi-supervised, and causal machine learning algorithms to enable effective model development and deployment. It also provides functionalities such as data preprocessing, feature engineering, algorithm selection, hyperparameter optimization, model evaluation and online deployment within a user-friendly interface. The software’s effectiveness was demonstrated through its application in predicting light catalytic cracked oil yield using real industrial data. By automating the soft sensor design process, the Soft Sensor Manager enhances modeling efficiency and model quality, ultimately contributing to improved process monitoring and optimization in industrial settings.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"160 ","pages":"Article 106322"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000851","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In modern industrial processes, real-time monitoring and control of key quality variables are crucial but challenging due to measurement limitations and process complexities. Traditional methods for developing soft sensor models are not only time-consuming and labor-intensive but also require substantial expertise in machine learning, and often lack user-friendly interfaces, thereby limiting their accessibility to engineers in the field. To address these issues, this paper introduces an easy-to-use, open and efficient automated soft sensor design tool called Soft Sensor Manager. The Soft Sensor Manager incorporates advanced supervised, semi-supervised, and causal machine learning algorithms to enable effective model development and deployment. It also provides functionalities such as data preprocessing, feature engineering, algorithm selection, hyperparameter optimization, model evaluation and online deployment within a user-friendly interface. The software’s effectiveness was demonstrated through its application in predicting light catalytic cracked oil yield using real industrial data. By automating the soft sensor design process, the Soft Sensor Manager enhances modeling efficiency and model quality, ultimately contributing to improved process monitoring and optimization in industrial settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信