Influence of local topographic structures on the atmospheric mechanisms related to the Andean-Amazon rainiest zone

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Ricardo A. Gutierrez-Villarreal , Clémentine Junquas , Jhan-Carlo Espinoza , Patrice Baby , Elisa Armijos
{"title":"Influence of local topographic structures on the atmospheric mechanisms related to the Andean-Amazon rainiest zone","authors":"Ricardo A. Gutierrez-Villarreal ,&nbsp;Clémentine Junquas ,&nbsp;Jhan-Carlo Espinoza ,&nbsp;Patrice Baby ,&nbsp;Elisa Armijos","doi":"10.1016/j.atmosres.2025.108068","DOIUrl":null,"url":null,"abstract":"<div><div>The Andes-Amazon transition region features critically important ecological services on the local, regional and global scales. This region is among the rainiest zones in the world, with rainfall rates of up to 7000 mm/year. However, the physical mechanisms leading to the existence of these “precipitation hotspots” remain poorly known. Here, we attempt to disentangle the controlling atmospheric mechanisms exerted by local topographic structures that started to uplift about 5–10 million years ago in response to the Nazca Ridge subduction, in the vicinity of the Quincemil hotspot, the most intense of them. We first use the Weather Research and Forecasting model to conduct sensitivity tests to planetary boundary layer parameterizations at 5 km horizontal grid spacing during the austral summer of 2012–13. After finding the most suitable configuration in terms of the diurnal cycle of rainfall intensity and extent, we further perform topographic sensitivity tests by reducing the Fitzcarrald Arch lowlands and, on top of it, by removing the Camisea mountain. The Fitzcarrald Arch deflects moisture flux towards Quincemil, while the Camisea mountain induces local vortical circulations that increase moisture transport, convergence and rainfall over Quincemil, ultimately controlling its location and intensity by up to 40 %. When reducing the height of the Andes in half, we find that it sustains the development of precipitation hotspots, accounting for up to 60 % of rainfall, by providing a mechanical forcing to increase regional-scale moisture fluxes. Such mechanisms dominate during nighttime, when rainfall peaks in the region, and might explain the existence of the rainiest zone in the Andes-Amazon transition.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"320 ","pages":"Article 108068"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525001607","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Andes-Amazon transition region features critically important ecological services on the local, regional and global scales. This region is among the rainiest zones in the world, with rainfall rates of up to 7000 mm/year. However, the physical mechanisms leading to the existence of these “precipitation hotspots” remain poorly known. Here, we attempt to disentangle the controlling atmospheric mechanisms exerted by local topographic structures that started to uplift about 5–10 million years ago in response to the Nazca Ridge subduction, in the vicinity of the Quincemil hotspot, the most intense of them. We first use the Weather Research and Forecasting model to conduct sensitivity tests to planetary boundary layer parameterizations at 5 km horizontal grid spacing during the austral summer of 2012–13. After finding the most suitable configuration in terms of the diurnal cycle of rainfall intensity and extent, we further perform topographic sensitivity tests by reducing the Fitzcarrald Arch lowlands and, on top of it, by removing the Camisea mountain. The Fitzcarrald Arch deflects moisture flux towards Quincemil, while the Camisea mountain induces local vortical circulations that increase moisture transport, convergence and rainfall over Quincemil, ultimately controlling its location and intensity by up to 40 %. When reducing the height of the Andes in half, we find that it sustains the development of precipitation hotspots, accounting for up to 60 % of rainfall, by providing a mechanical forcing to increase regional-scale moisture fluxes. Such mechanisms dominate during nighttime, when rainfall peaks in the region, and might explain the existence of the rainiest zone in the Andes-Amazon transition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信