{"title":"On the planar weakly coupled nonlinear logarithmic Choquard systems","authors":"J.C. de Albuquerque , J. Carvalho , E. Medeiros","doi":"10.1016/j.jmaa.2025.129501","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the following class of coupled nonlinear logarithmic Choquard equations<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi></mtd><mtd><mo>=</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>,</mo></mtd><mtd><mspace></mspace><mtext>in </mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi></mtd><mtd><mo>=</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>v</mi><mo>+</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>v</mi><mo>,</mo></mtd><mtd><mspace></mspace><mtext>in </mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> We prove the existence of a nonnegative vector solution when <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Moreover, we prove that if <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then the system admits only the semi-trivial solution. Our approach is based on minimization over Nehari manifold and a version of the Principle of Symmetric Criticality due to Palais.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129501"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002823","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the following class of coupled nonlinear logarithmic Choquard equations We prove the existence of a nonnegative vector solution when . Moreover, we prove that if , then the system admits only the semi-trivial solution. Our approach is based on minimization over Nehari manifold and a version of the Principle of Symmetric Criticality due to Palais.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.