Xiaoxia Wang , Zhihai Fan , Xiaolong Yue , Qianqian Zhou , Danting Lin , Hong Zou
{"title":"Research on the impact of urban built environments on PM2.5 pollution based on machine learning methods","authors":"Xiaoxia Wang , Zhihai Fan , Xiaolong Yue , Qianqian Zhou , Danting Lin , Hong Zou","doi":"10.1016/j.apr.2025.102503","DOIUrl":null,"url":null,"abstract":"<div><div>Since PM<sub>2.5</sub> pollution poses a serious threat to the environment and health, understanding its interaction with the urban built environment (UBE) is essential for effective mitigation. To assess the impact of UBE on PM<sub>2.5</sub> pollution, this study quantitatively evaluates the relationship between them. First, given the limitation that current PM<sub>2.5</sub> concentration collection mainly relies on fixed monitoring stations, this study set up a taxi mobile monitoring system. Second, aiming at the deficiency of traditional extraction mostly based on remote sensing imagery, this study proposed a deep learning-based method to calculate the green and sky visibility index. Pearson's preliminary correlation analysis showed that climate factors were most correlated to changes in PM<sub>2.5</sub> concentration. Furthermore, the prediction effects of nine mainstream machine learning methods were compared. The results showed that (1) The overall prediction performance of summer (<em>R</em><sup>2</sup> = 0.92) and autumn (<em>R</em><sup>2</sup> = 0.93) outperformed the one of spring (<em>R</em><sup>2</sup> = 0.88) and winter (<em>R</em><sup>2</sup> = 0.86) seasons. (2) The Random Forest and LightGBM models obtained optimal predictions with <em>R</em><sup>2</sup> of 0.907 and 0.916, respectively. (3) The complex nonlinear relationship between the UBE and PM<sub>2.5</sub> concentration needed to be captured by the Shapley additive explanations method. The findings suggested controlling the space enclosure index between 0.08 and 0.15, plot area ratio within 0.5, and building density within 0.2. This study provided a general analytical framework for understanding the diffusion mechanism of PM<sub>2.5</sub> concentrations and a theoretical basis for green urban design.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 6","pages":"Article 102503"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001059","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Since PM2.5 pollution poses a serious threat to the environment and health, understanding its interaction with the urban built environment (UBE) is essential for effective mitigation. To assess the impact of UBE on PM2.5 pollution, this study quantitatively evaluates the relationship between them. First, given the limitation that current PM2.5 concentration collection mainly relies on fixed monitoring stations, this study set up a taxi mobile monitoring system. Second, aiming at the deficiency of traditional extraction mostly based on remote sensing imagery, this study proposed a deep learning-based method to calculate the green and sky visibility index. Pearson's preliminary correlation analysis showed that climate factors were most correlated to changes in PM2.5 concentration. Furthermore, the prediction effects of nine mainstream machine learning methods were compared. The results showed that (1) The overall prediction performance of summer (R2 = 0.92) and autumn (R2 = 0.93) outperformed the one of spring (R2 = 0.88) and winter (R2 = 0.86) seasons. (2) The Random Forest and LightGBM models obtained optimal predictions with R2 of 0.907 and 0.916, respectively. (3) The complex nonlinear relationship between the UBE and PM2.5 concentration needed to be captured by the Shapley additive explanations method. The findings suggested controlling the space enclosure index between 0.08 and 0.15, plot area ratio within 0.5, and building density within 0.2. This study provided a general analytical framework for understanding the diffusion mechanism of PM2.5 concentrations and a theoretical basis for green urban design.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.