Multiscale impacts of urban nature on land surface temperature over two decades in a city with cloudy and foggy climates

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Yuxin Cao , Sheng Liu , Yi Lu , Hongtai Yang , Linchuan Yang
{"title":"Multiscale impacts of urban nature on land surface temperature over two decades in a city with cloudy and foggy climates","authors":"Yuxin Cao ,&nbsp;Sheng Liu ,&nbsp;Yi Lu ,&nbsp;Hongtai Yang ,&nbsp;Linchuan Yang","doi":"10.1016/j.uclim.2025.102389","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid urbanization intensifies the urban heat island (UHI) effect and increases the frequency of extreme heat events, posing significant risks to urban environments and residents' well-being. While previous research has demonstrated that urban nature, particularly urban green spaces (UGS) and urban blue spaces (UBS), helps mitigate UHI, there is still a limited understanding of the spatiotemporal relationships between urban nature and land surface temperature (LST, an indicator of UHI) in cities with cloudy and foggy climates over many decades. This study leverages remote sensing data and applies the multiscale geographically weighted regression (MGWR) model to analyze the multiscale impacts of urban nature on LST in Chengdu, China, from 2000 to 2020. Our results show a consistent rise in LST levels over this period, alongside a reduction in UGS in both the city center and its surrounding areas. Additionally, urban nature consistently mitigates UHI at local scales over time. The mean coefficients of UGS were − 0.33, −0.28, −0.25, and ‐0.37 across four periods, while those of UBS were − 0.26, −0.30, −0.28, and − 0.21. These findings provide valuable insights into the multiscale role of urban nature in mitigating UHI, offering evidence to support policymakers in developing nature-based solutions to enhance thermal comfort.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"61 ","pages":"Article 102389"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095525001051","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid urbanization intensifies the urban heat island (UHI) effect and increases the frequency of extreme heat events, posing significant risks to urban environments and residents' well-being. While previous research has demonstrated that urban nature, particularly urban green spaces (UGS) and urban blue spaces (UBS), helps mitigate UHI, there is still a limited understanding of the spatiotemporal relationships between urban nature and land surface temperature (LST, an indicator of UHI) in cities with cloudy and foggy climates over many decades. This study leverages remote sensing data and applies the multiscale geographically weighted regression (MGWR) model to analyze the multiscale impacts of urban nature on LST in Chengdu, China, from 2000 to 2020. Our results show a consistent rise in LST levels over this period, alongside a reduction in UGS in both the city center and its surrounding areas. Additionally, urban nature consistently mitigates UHI at local scales over time. The mean coefficients of UGS were − 0.33, −0.28, −0.25, and ‐0.37 across four periods, while those of UBS were − 0.26, −0.30, −0.28, and − 0.21. These findings provide valuable insights into the multiscale role of urban nature in mitigating UHI, offering evidence to support policymakers in developing nature-based solutions to enhance thermal comfort.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信