Research on speed optimization of fixed route ship with low data dependence

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Chaodong Hu , Yu Wang , Xu Han , Hui Liu , Qun Sun , Bo Zhou
{"title":"Research on speed optimization of fixed route ship with low data dependence","authors":"Chaodong Hu ,&nbsp;Yu Wang ,&nbsp;Xu Han ,&nbsp;Hui Liu ,&nbsp;Qun Sun ,&nbsp;Bo Zhou","doi":"10.1016/j.oceaneng.2025.121065","DOIUrl":null,"url":null,"abstract":"<div><div>A low data demand long-term fuel consumption prediction model suitable for variable pitch propeller ships has been established for the first time, and a segmented route speed optimization method has been provided. The event triggered Informer (ET-Informer) algorithm has the ability to predict long-term high-precision sequences and capture key data to reduce data redundancy and improve computational efficiency. The event triggering mechanism allows for data loss at a certain stage, improving the algorithm's fault tolerance and reducing communication requirements. An ordered sample clustering algorithm based on the weighted event-triggered mechanism is introduced, enabling the adjustment of clustering weights according to demand. The threshold for dynamically adjusting similarity measures triggered by events can solve the problem of uneven clustering distribution. This study reduces data dependency and improves the fault tolerance and accuracy of speed optimization through two aspects: fuel consumption model prediction and route segment speed optimization. The proposed algorithm was validated using real-world data from 24 passenger ferry voyages on major international routes in 2021, achieving a fuel consumption prediction accuracy of 98.4 % and a 4.4 % reduction in fuel consumption, while maintaining travel time. The results confirm the effectiveness, robustness, and practical applicability of the fixed-route speed optimization algorithm.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"328 ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825007784","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A low data demand long-term fuel consumption prediction model suitable for variable pitch propeller ships has been established for the first time, and a segmented route speed optimization method has been provided. The event triggered Informer (ET-Informer) algorithm has the ability to predict long-term high-precision sequences and capture key data to reduce data redundancy and improve computational efficiency. The event triggering mechanism allows for data loss at a certain stage, improving the algorithm's fault tolerance and reducing communication requirements. An ordered sample clustering algorithm based on the weighted event-triggered mechanism is introduced, enabling the adjustment of clustering weights according to demand. The threshold for dynamically adjusting similarity measures triggered by events can solve the problem of uneven clustering distribution. This study reduces data dependency and improves the fault tolerance and accuracy of speed optimization through two aspects: fuel consumption model prediction and route segment speed optimization. The proposed algorithm was validated using real-world data from 24 passenger ferry voyages on major international routes in 2021, achieving a fuel consumption prediction accuracy of 98.4 % and a 4.4 % reduction in fuel consumption, while maintaining travel time. The results confirm the effectiveness, robustness, and practical applicability of the fixed-route speed optimization algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信