Design and experimental tests for novel shapes of floating OWC wave energy converters with the additional purpose of breakwater

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Xiangcheng Lyu , Chenhao Mi , Stan Collions , Wenchuang Chen , Danlei Yang , Luofeng Huang
{"title":"Design and experimental tests for novel shapes of floating OWC wave energy converters with the additional purpose of breakwater","authors":"Xiangcheng Lyu ,&nbsp;Chenhao Mi ,&nbsp;Stan Collions ,&nbsp;Wenchuang Chen ,&nbsp;Danlei Yang ,&nbsp;Luofeng Huang","doi":"10.1016/j.oceaneng.2025.121031","DOIUrl":null,"url":null,"abstract":"<div><div>The oscillating water column (OWC) is a type of wave energy converter (WEC) that captures the energy of incoming waves. As waves reach the structure, their movement causes the water within an enclosed chamber to oscillate, creating airflow that powers a turbine, generating electricity. This principle can be applied to the design of breakwaters, which can protect marine structures such as floating solar farms and wind turbines. This study involved designing two types of buoyancy chambers for the OWC-WEC and two underneath baffles with adjustable spacing. These configurations were tested in a wave tank to assess wave energy capture, wave attenuation, hydrodynamics, and mooring forces. The experimental results demonstrate that a baffle spacing of 1 m, combined with a V-type buoyancy chamber, significantly enhances the wave energy capture and wave attenuation performance of the OWC. This configuration achieves up to a 57.09 % increase in the capture width ratio and a maximum reduction of 20.88 % in the wave transmission coefficient. Furthermore, mooring line forces are reduced by 21.86 %, while the baffles effectively mitigate pitch motion. Notably, greater pitch reduction improves the capture width ratio. In conclusion, this study introduces a novel wave energy converter, providing key insights for future marine energy development.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"328 ","pages":"Article 121031"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825007449","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The oscillating water column (OWC) is a type of wave energy converter (WEC) that captures the energy of incoming waves. As waves reach the structure, their movement causes the water within an enclosed chamber to oscillate, creating airflow that powers a turbine, generating electricity. This principle can be applied to the design of breakwaters, which can protect marine structures such as floating solar farms and wind turbines. This study involved designing two types of buoyancy chambers for the OWC-WEC and two underneath baffles with adjustable spacing. These configurations were tested in a wave tank to assess wave energy capture, wave attenuation, hydrodynamics, and mooring forces. The experimental results demonstrate that a baffle spacing of 1 m, combined with a V-type buoyancy chamber, significantly enhances the wave energy capture and wave attenuation performance of the OWC. This configuration achieves up to a 57.09 % increase in the capture width ratio and a maximum reduction of 20.88 % in the wave transmission coefficient. Furthermore, mooring line forces are reduced by 21.86 %, while the baffles effectively mitigate pitch motion. Notably, greater pitch reduction improves the capture width ratio. In conclusion, this study introduces a novel wave energy converter, providing key insights for future marine energy development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信