Velocity Jumps for Molecular Dynamics

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Nicolaï Gouraud, Louis Lagardère, Olivier Adjoua, Thomas Plé, Pierre Monmarché* and Jean-Philip Piquemal*, 
{"title":"Velocity Jumps for Molecular Dynamics","authors":"Nicolaï Gouraud,&nbsp;Louis Lagardère,&nbsp;Olivier Adjoua,&nbsp;Thomas Plé,&nbsp;Pierre Monmarché* and Jean-Philip Piquemal*,&nbsp;","doi":"10.1021/acs.jctc.5c0002310.1021/acs.jctc.5c00023","DOIUrl":null,"url":null,"abstract":"<p >We introduce the Velocity Jumps approach, denoted as JUMP, a new class of Molecular dynamics integrators, replacing the Langevin dynamics by a hybrid model combining a classical Langevin diffusion and a piecewise deterministic Markov process, where the expensive computation of long-range pairwise interactions is replaced by a resampling of the velocities at random times. This framework allows for an acceleration in the simulation speed while preserving sampling and dynamical properties such as the diffusion constant. It can also be integrated in classical multi-time-step methods, pushing further the computational speedup, while avoiding some of the resonance issues of the latter thanks to the random nature of jumps. The JUMP, JUMP-RESPA and JUMP-RESPA1 integrators have been implemented in the GPU-accelerated version of the Tinker-HP package and are shown to provide significantly enhanced performances compared to their BAOAB, BAOAB-RESPA and BAOAB-RESPA1 counterparts, respectively.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 6","pages":"2854–2866 2854–2866"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the Velocity Jumps approach, denoted as JUMP, a new class of Molecular dynamics integrators, replacing the Langevin dynamics by a hybrid model combining a classical Langevin diffusion and a piecewise deterministic Markov process, where the expensive computation of long-range pairwise interactions is replaced by a resampling of the velocities at random times. This framework allows for an acceleration in the simulation speed while preserving sampling and dynamical properties such as the diffusion constant. It can also be integrated in classical multi-time-step methods, pushing further the computational speedup, while avoiding some of the resonance issues of the latter thanks to the random nature of jumps. The JUMP, JUMP-RESPA and JUMP-RESPA1 integrators have been implemented in the GPU-accelerated version of the Tinker-HP package and are shown to provide significantly enhanced performances compared to their BAOAB, BAOAB-RESPA and BAOAB-RESPA1 counterparts, respectively.

Abstract Image

分子动力学的速度跳跃
我们引入了速度跳跃方法,表示为JUMP,这是一类新的分子动力学积分器,用结合经典朗之万扩散和分段确定性马尔可夫过程的混合模型取代朗之万动力学,其中长距离两两相互作用的昂贵计算被随机时间速度的重新采样所取代。该框架允许在保持采样和动态特性(如扩散常数)的同时加速模拟速度。它也可以集成在经典的多时间步方法中,进一步提高计算速度,同时由于跳跃的随机性,避免了后者的一些共振问题。JUMP, JUMP- respa和JUMP- respa1集成商已经在Tinker-HP包的gpu加速版本中实现,并且与它们的BAOAB, BAOAB- respa和BAOAB- respa1对应版本相比,分别显示出显着增强的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信