Improved Free-Energy Estimates for the Permeation of Bulky Antibiotic Molecules through Porin Channels Using Temperature-Accelerated Sliced Sampling

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Abhishek Acharya,  and , Ulrich Kleinekathöfer*, 
{"title":"Improved Free-Energy Estimates for the Permeation of Bulky Antibiotic Molecules through Porin Channels Using Temperature-Accelerated Sliced Sampling","authors":"Abhishek Acharya,&nbsp; and ,&nbsp;Ulrich Kleinekathöfer*,&nbsp;","doi":"10.1021/acs.jctc.4c0167910.1021/acs.jctc.4c01679","DOIUrl":null,"url":null,"abstract":"<p >The estimation of accurate free energies for antibiotic permeation via the bacterial outer-membrane porins has proven to be challenging. Atomistic simulations of the process suffer from sampling issues that are typical of systems with complex and slow dynamics, even with the application of advanced sampling methods. Ultimately, the objective is to obtain accurate potential of mean force (PMF) for a large set of antibiotics and to predict permeation rates. Therefore, the computational expense becomes an important criterion as well. Simulation studies on the permeation process and similar complex processes have shown that both the sampling scheme employed and the procedure used for the generation of the initial states can critically affect the quality of the estimates obtained and the respective computational overhead. The temperature-accelerated sliced sampling method (TASS) has been shown to partly address the issues with efficient sampling of the important and slow degrees of freedom by enabling simultaneous biasing of a large number of collective variables. In this work, we investigate the effect of the procedure used for the generation of input conformations on the convergence of free-energy estimates obtained from TASS simulations. In particular, we compare the steered molecular dynamics (MD)-based procedure that has been used in previous TASS studies with the Monte Carlo pathway search method, which is used to obtain approximate permeation trajectories with minimum perturbation of the protein channel. We tested different input setups for enrofloxacin permeation through the porins OmpK35 and OmpE35. The best setup shows an improved agreement between independent PMFs in both cases at a much lower computational cost.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 6","pages":"3246–3259 3246–3259"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jctc.4c01679","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01679","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of accurate free energies for antibiotic permeation via the bacterial outer-membrane porins has proven to be challenging. Atomistic simulations of the process suffer from sampling issues that are typical of systems with complex and slow dynamics, even with the application of advanced sampling methods. Ultimately, the objective is to obtain accurate potential of mean force (PMF) for a large set of antibiotics and to predict permeation rates. Therefore, the computational expense becomes an important criterion as well. Simulation studies on the permeation process and similar complex processes have shown that both the sampling scheme employed and the procedure used for the generation of the initial states can critically affect the quality of the estimates obtained and the respective computational overhead. The temperature-accelerated sliced sampling method (TASS) has been shown to partly address the issues with efficient sampling of the important and slow degrees of freedom by enabling simultaneous biasing of a large number of collective variables. In this work, we investigate the effect of the procedure used for the generation of input conformations on the convergence of free-energy estimates obtained from TASS simulations. In particular, we compare the steered molecular dynamics (MD)-based procedure that has been used in previous TASS studies with the Monte Carlo pathway search method, which is used to obtain approximate permeation trajectories with minimum perturbation of the protein channel. We tested different input setups for enrofloxacin permeation through the porins OmpK35 and OmpE35. The best setup shows an improved agreement between independent PMFs in both cases at a much lower computational cost.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信