Sang Wook Han*, Won Seok Yun, Gi-Beom Cha, Seungho Seong, Jong Chan Kim, Hu Young Jeong*, Chang Won Ahn, Keisuke Fukutani, Roland Stania and Jeongsoo Kang,
{"title":"Twist-Induced Dimensional Crossover and Topological Phase Transitions in Bismuthene Quasicrystals","authors":"Sang Wook Han*, Won Seok Yun, Gi-Beom Cha, Seungho Seong, Jong Chan Kim, Hu Young Jeong*, Chang Won Ahn, Keisuke Fukutani, Roland Stania and Jeongsoo Kang, ","doi":"10.1021/acs.chemmater.5c0020410.1021/acs.chemmater.5c00204","DOIUrl":null,"url":null,"abstract":"<p >Twisted bismuthene homojunctions, comprised of a Bi(111) bilayer atop two Bi(110) monolayers, exhibit a distinct growth orientation that is facilitated by self-assembly. Our cross-sectional structural analysis reveals an unexpected growth alignment of Bi(110) layers on transition-metal dichalcogenides, deviating from the anticipated Bi(111) bilayer structure. This self-assembly process, driven by the crystal symmetry interplay, induces a topological phase transition beyond a critical thickness. The dimensional crossover in the Fermi surfaces marks the electronic transition from two-dimensional (2D) Bi(110) to 1D Bi(111) quasicrystals. Additionally, the emergence of the topologically nontrivial band structures, an enhanced 1D carrier density, and a metal–insulator transition through band inversion indicate that the twisted bismuthene quasicrystals are promising candidates for higher-order topological quasicrystalline insulators. These findings pave the way for low-resistance contacts in 2D transistors, advancing the development of next-generation electronic devices.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 6","pages":"2358–2366 2358–2366"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00204","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Twisted bismuthene homojunctions, comprised of a Bi(111) bilayer atop two Bi(110) monolayers, exhibit a distinct growth orientation that is facilitated by self-assembly. Our cross-sectional structural analysis reveals an unexpected growth alignment of Bi(110) layers on transition-metal dichalcogenides, deviating from the anticipated Bi(111) bilayer structure. This self-assembly process, driven by the crystal symmetry interplay, induces a topological phase transition beyond a critical thickness. The dimensional crossover in the Fermi surfaces marks the electronic transition from two-dimensional (2D) Bi(110) to 1D Bi(111) quasicrystals. Additionally, the emergence of the topologically nontrivial band structures, an enhanced 1D carrier density, and a metal–insulator transition through band inversion indicate that the twisted bismuthene quasicrystals are promising candidates for higher-order topological quasicrystalline insulators. These findings pave the way for low-resistance contacts in 2D transistors, advancing the development of next-generation electronic devices.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.