{"title":"Fermi-Level Interstitial Electron Contributions: A Key Mechanism Driving Magnetism in Electrides","authors":"Jiahao Yu, Kun Li, Hideo Hosono and Junjie Wang*, ","doi":"10.1021/acs.chemmater.5c0015810.1021/acs.chemmater.5c00158","DOIUrl":null,"url":null,"abstract":"<p >Electrides, a unique class of ionic materials, are distinguished by their exceptional properties, such as low work functions, making them highly versatile for a broad range of applications. Remarkably, some electrides exhibit magnetism, even in the absence of conventional magnetic elements. However, the underlying mechanisms governing their magnetic properties require further investigation, which will enable the development of magnetic electrides that are not primarily limited to modifying materials with magnetic elements. In this study, we demonstrate that the proportion of interstitial electrons contributing to states near the Fermi level is a critical factor in the emergence of magnetism in electrides. Leveraging this insight, we successfully designed and identified a series of magnetic electrides, including Ca<sub>3</sub>YNbSi<sub>3</sub> and Sr<sub>24</sub>P<sub>15</sub>F, without reliance on known magnetic prototypes. This strategy and the accompanying theoretical framework present a flexible and powerful approach, potentially expanding the frontiers of magnetic electrides research.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 6","pages":"2339–2348 2339–2348"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00158","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrides, a unique class of ionic materials, are distinguished by their exceptional properties, such as low work functions, making them highly versatile for a broad range of applications. Remarkably, some electrides exhibit magnetism, even in the absence of conventional magnetic elements. However, the underlying mechanisms governing their magnetic properties require further investigation, which will enable the development of magnetic electrides that are not primarily limited to modifying materials with magnetic elements. In this study, we demonstrate that the proportion of interstitial electrons contributing to states near the Fermi level is a critical factor in the emergence of magnetism in electrides. Leveraging this insight, we successfully designed and identified a series of magnetic electrides, including Ca3YNbSi3 and Sr24P15F, without reliance on known magnetic prototypes. This strategy and the accompanying theoretical framework present a flexible and powerful approach, potentially expanding the frontiers of magnetic electrides research.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.