Enhanced Electrochromic Smart Windows Based on Supramolecular Viologen Tweezers

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jaume Ramon Otaegui, Silvia Mena, Jovelt M. Dorsainvil, Gonzalo Guirado, Daniel Ruiz-Molina, Jordi Hernando*, Jonathan C. Barnes* and Claudio Roscini*, 
{"title":"Enhanced Electrochromic Smart Windows Based on Supramolecular Viologen Tweezers","authors":"Jaume Ramon Otaegui,&nbsp;Silvia Mena,&nbsp;Jovelt M. Dorsainvil,&nbsp;Gonzalo Guirado,&nbsp;Daniel Ruiz-Molina,&nbsp;Jordi Hernando*,&nbsp;Jonathan C. Barnes* and Claudio Roscini*,&nbsp;","doi":"10.1021/acs.chemmater.4c0317410.1021/acs.chemmater.4c03174","DOIUrl":null,"url":null,"abstract":"<p >Extending the spectral response of viologen-based electrochromic devices to the near-infrared region is essential to enhance their performance for smart window applications. Although synthetic and formulation modifications have been proposed to achieve this goal, these strategies always come at the expense of deteriorating the electrochromic behavior of the system. To overcome this limitation, herein we exploited the supramolecular chemistry of viologen molecular tweezers, which undergo an intramolecular dimerization process upon reduction that leads to broad light absorption through the visible and near-infrared spectra. We observed this behavior to take place at low concentrations in a variety of electrolytic media, including solid-state ionogels that could be applied to the fabrication of electrochromic devices. Better spectral response, lower operation voltage, and higher stability were measured for these devices relative to analogous systems based on viologen monomers. As a result, when used as electrochromic smart windows, the viologen tweezer-based devices exhibited enhanced modulation of solar heat gain with reduced energy consumption, thereby demonstrating the potential of viologen supramolecular chemistry to rationally improve the performance of electrochromic devices.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 6","pages":"2220–2229 2220–2229"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c03174","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extending the spectral response of viologen-based electrochromic devices to the near-infrared region is essential to enhance their performance for smart window applications. Although synthetic and formulation modifications have been proposed to achieve this goal, these strategies always come at the expense of deteriorating the electrochromic behavior of the system. To overcome this limitation, herein we exploited the supramolecular chemistry of viologen molecular tweezers, which undergo an intramolecular dimerization process upon reduction that leads to broad light absorption through the visible and near-infrared spectra. We observed this behavior to take place at low concentrations in a variety of electrolytic media, including solid-state ionogels that could be applied to the fabrication of electrochromic devices. Better spectral response, lower operation voltage, and higher stability were measured for these devices relative to analogous systems based on viologen monomers. As a result, when used as electrochromic smart windows, the viologen tweezer-based devices exhibited enhanced modulation of solar heat gain with reduced energy consumption, thereby demonstrating the potential of viologen supramolecular chemistry to rationally improve the performance of electrochromic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信