Modification of Thermally Activated Delayed Fluorescence Emitters Comprising Acridan–Pyrimidine and Spiro-Acridan–Pyrimidine Moieties for Efficient Triplet Harvesting

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rita Butkute*, Steponas Raisys, Tomas Serevicius, Viktorija Andruleviciene, Aliyu Mahomed Hamisu, Gediminas Kreiza, Juozas V. Grazulevicius and Saulius Jursenas, 
{"title":"Modification of Thermally Activated Delayed Fluorescence Emitters Comprising Acridan–Pyrimidine and Spiro-Acridan–Pyrimidine Moieties for Efficient Triplet Harvesting","authors":"Rita Butkute*,&nbsp;Steponas Raisys,&nbsp;Tomas Serevicius,&nbsp;Viktorija Andruleviciene,&nbsp;Aliyu Mahomed Hamisu,&nbsp;Gediminas Kreiza,&nbsp;Juozas V. Grazulevicius and Saulius Jursenas,&nbsp;","doi":"10.1021/acsaelm.4c0214810.1021/acsaelm.4c02148","DOIUrl":null,"url":null,"abstract":"<p >In this study, we investigate the effect of substitution and conformational impact on the photophysical properties of novel 5-methylpyrimidine derivatives containing electron-donating groups with distinct rigidity. Research has revealed that all of the compounds showed pronounced thermally activated delayed fluorescence (TADF) features. The addition of the spiro-acridan moiety eliminated dual emission, simplifying the photophysical behavior of the compounds. Compounds containing spiro-acridan units exhibited a larger singlet–triplet energy gap, resulting in a reduced reverse intersystem crossing rate and an extended TADF lifetime in both toluene solutions and PMMA films. Additionally, the delayed fluorescence intensity was higher in these compounds, which was attributed to a slower nonradiative triplet quenching rate. Embedding TADF compounds into a rigid PMMA matrix significantly increases the quantum yield of delayed emission by minimizing nonradiative deactivation caused by intramolecular twisting. The considerable conformational disorder in the polymer-doped films leads to multiexponential fluorescence decay and noticeable shifts in both prompt and delayed fluorescence in time-resolved spectra. The attachment of electron-donating moieties at the fourth position in 5-methylpyrimidine reduces conformational disorder due to the restriction of the rotations caused by methyl attachment.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 6","pages":"2339–2348 2339–2348"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c02148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c02148","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the effect of substitution and conformational impact on the photophysical properties of novel 5-methylpyrimidine derivatives containing electron-donating groups with distinct rigidity. Research has revealed that all of the compounds showed pronounced thermally activated delayed fluorescence (TADF) features. The addition of the spiro-acridan moiety eliminated dual emission, simplifying the photophysical behavior of the compounds. Compounds containing spiro-acridan units exhibited a larger singlet–triplet energy gap, resulting in a reduced reverse intersystem crossing rate and an extended TADF lifetime in both toluene solutions and PMMA films. Additionally, the delayed fluorescence intensity was higher in these compounds, which was attributed to a slower nonradiative triplet quenching rate. Embedding TADF compounds into a rigid PMMA matrix significantly increases the quantum yield of delayed emission by minimizing nonradiative deactivation caused by intramolecular twisting. The considerable conformational disorder in the polymer-doped films leads to multiexponential fluorescence decay and noticeable shifts in both prompt and delayed fluorescence in time-resolved spectra. The attachment of electron-donating moieties at the fourth position in 5-methylpyrimidine reduces conformational disorder due to the restriction of the rotations caused by methyl attachment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信