{"title":"Assembly mechanism of the β-carboxysome shell mediated by the chaperone CcmS","authors":"Jing Li, Jia-Xin Deng, Xin Chen, Bo Li, Bo-Rui Li, Zhong-Liang Zhu, Jiexi Liu, Yuxing Chen, Hualing Mi, Cong-Zhao Zhou, Yong-Liang Jiang","doi":"10.1111/nph.70086","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n </p><ul>\n \n <li>Carboxysomes are self-assembled bacterial microcompartments (BMCs) that encapsulate the enzymes RuBisCO and carbonic anhydrase into a proteinaceous shell, enhancing the efficiency of photosynthetic carbon fixation. The chaperone CcmS was reported to participate in the assembly of β-carboxysomes; however, the underlying molecular mechanism remains elusive.</li>\n \n <li>We report the crystal structure of CcmS from <i>Synechocystis</i> sp. PCC 6803, revealing a monomer of α/β fold. Moreover, its complex structures with two types of BMC hexamers, CcmK1 homohexamer and CcmK1-CcmK2 heterohexamer, reveal a same pattern of CcmS binding to the featured C-terminal segment of CcmK1.</li>\n \n <li>Upon binding to CcmS, this C-terminal segment of CcmK1 is folded into an amphipathic α-helix protruding outward that might function as a hinge to crosslink adjacent BMC-H hexamers, thereby facilitating concerted and precise assembly of the β-carboxysome shell. Deletion of the <i>ccmS</i> gene or the 8-residue C-terminal coding region of <i>ccmK1</i> resulted in the formation of aberrant and fewer carboxysomes, suppressed photosynthetic capacity in <i>Synechocystis</i> sp. PCC 6803.</li>\n \n <li>These findings enable us to propose a putative model for the chaperone-assisted assembly of β-carboxysome shell and provide clues for the design and engineering of efficient carbon fixation machinery.</li>\n </ul>\n </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"246 4","pages":"1676-1690"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.70086","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Carboxysomes are self-assembled bacterial microcompartments (BMCs) that encapsulate the enzymes RuBisCO and carbonic anhydrase into a proteinaceous shell, enhancing the efficiency of photosynthetic carbon fixation. The chaperone CcmS was reported to participate in the assembly of β-carboxysomes; however, the underlying molecular mechanism remains elusive.
We report the crystal structure of CcmS from Synechocystis sp. PCC 6803, revealing a monomer of α/β fold. Moreover, its complex structures with two types of BMC hexamers, CcmK1 homohexamer and CcmK1-CcmK2 heterohexamer, reveal a same pattern of CcmS binding to the featured C-terminal segment of CcmK1.
Upon binding to CcmS, this C-terminal segment of CcmK1 is folded into an amphipathic α-helix protruding outward that might function as a hinge to crosslink adjacent BMC-H hexamers, thereby facilitating concerted and precise assembly of the β-carboxysome shell. Deletion of the ccmS gene or the 8-residue C-terminal coding region of ccmK1 resulted in the formation of aberrant and fewer carboxysomes, suppressed photosynthetic capacity in Synechocystis sp. PCC 6803.
These findings enable us to propose a putative model for the chaperone-assisted assembly of β-carboxysome shell and provide clues for the design and engineering of efficient carbon fixation machinery.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.