Zhixing Wen, Jiangang Chen, Qirui Zhang, Ge Wang, Xuemei Wang, Fan Yang, Qing Liu, Xiao Luo, Fucai Liu
{"title":"2D Van Der Waals Ferroelectric Materials and Devices for Neuromorphic Computing","authors":"Zhixing Wen, Jiangang Chen, Qirui Zhang, Ge Wang, Xuemei Wang, Fan Yang, Qing Liu, Xiao Luo, Fucai Liu","doi":"10.1002/smll.202412761","DOIUrl":null,"url":null,"abstract":"2D van der Waals (vdW) ferroelectric materials are emerging as transformative components in modern electronics and neuromorphic computing. The atomic-scale thickness, coupled with robust ferroelectric properties and seamless integration into vdW engineering, offers unprecedented opportunities for the development of high-performance and low-power devices. Notably, 2D ferroelectric devices excel in enabling multistate storage and neuromorphic functionalities in emulating synapses or retinas, positioning them as prime candidates for next-generation in-sensor-and-memory units. Despite ongoing challenges such as scalability, material stability, and uniformity, rapid interdisciplinary advancements and advancing nanofabrication processes are driving the field forward. This review delves into the fundamental principles of 2D ferroelectricity, highlights typical materials, and examines key device structures along with their applications in non-von Neumann architecture development and neuromorphic computing. By providing an in-depth overview, this work underscores the potential of 2D ferroelectric materials to revolutionize the future of electronics.","PeriodicalId":228,"journal":{"name":"Small","volume":"25 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412761","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
2D van der Waals (vdW) ferroelectric materials are emerging as transformative components in modern electronics and neuromorphic computing. The atomic-scale thickness, coupled with robust ferroelectric properties and seamless integration into vdW engineering, offers unprecedented opportunities for the development of high-performance and low-power devices. Notably, 2D ferroelectric devices excel in enabling multistate storage and neuromorphic functionalities in emulating synapses or retinas, positioning them as prime candidates for next-generation in-sensor-and-memory units. Despite ongoing challenges such as scalability, material stability, and uniformity, rapid interdisciplinary advancements and advancing nanofabrication processes are driving the field forward. This review delves into the fundamental principles of 2D ferroelectricity, highlights typical materials, and examines key device structures along with their applications in non-von Neumann architecture development and neuromorphic computing. By providing an in-depth overview, this work underscores the potential of 2D ferroelectric materials to revolutionize the future of electronics.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.