H. X. Lu, W. G. Liu, Z. H. Liu, Y. B. Sun, H. Y. Wang, Z. Wang, J. B. Dong, M. Xing, S. G. Kang, H. Liu, X. Liu, W. J. Sheng, Y. N. Cao, J. Hu
{"title":"Vegetation-Driven Spatial Heterogeneity of Land Surface Temperature Changes on the Chinese Loess Plateau","authors":"H. X. Lu, W. G. Liu, Z. H. Liu, Y. B. Sun, H. Y. Wang, Z. Wang, J. B. Dong, M. Xing, S. G. Kang, H. Liu, X. Liu, W. J. Sheng, Y. N. Cao, J. Hu","doi":"10.1029/2024GL112555","DOIUrl":null,"url":null,"abstract":"<p>A comprehensive understanding of the processes and mechanisms driving Holocene temperature changes is crucial for resolving the ongoing Holocene temperature controversy. Here, we reconstructed land surface temperature (LST) variations over the past 27,000 years in two loess-paleosol profiles from the Chinese Loess Plateau based on soil bacterial lipid signatures. By combining our data with other published records derived from the same proxy, we identify notable spatial inconsistencies in LST trends across geographically proximate areas with distinct vegetation cover, despite the expectation that air temperature trends should be consistent. By integrating modern meteorological data, we propose that rainfall-induced changes in surface vegetation dynamics are a key factor contributing to this divergence. This contributes to our understanding of past climate dynamics in East Asia and underscores the importance of considering vegetation effects when interpreting paleoclimate data and resolving controversies over Holocene temperature trends.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112555","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112555","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive understanding of the processes and mechanisms driving Holocene temperature changes is crucial for resolving the ongoing Holocene temperature controversy. Here, we reconstructed land surface temperature (LST) variations over the past 27,000 years in two loess-paleosol profiles from the Chinese Loess Plateau based on soil bacterial lipid signatures. By combining our data with other published records derived from the same proxy, we identify notable spatial inconsistencies in LST trends across geographically proximate areas with distinct vegetation cover, despite the expectation that air temperature trends should be consistent. By integrating modern meteorological data, we propose that rainfall-induced changes in surface vegetation dynamics are a key factor contributing to this divergence. This contributes to our understanding of past climate dynamics in East Asia and underscores the importance of considering vegetation effects when interpreting paleoclimate data and resolving controversies over Holocene temperature trends.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.