Yue Yang , Mostafa M. Abd El-Samie , Ahmed M.I. Abutalib , Mohamed I. Hassan Ali , Lei Zhou
{"title":"Enhanced energy conversion in a concentrated photovoltaic/thermal system using phase change material as a spectral beam filter","authors":"Yue Yang , Mostafa M. Abd El-Samie , Ahmed M.I. Abutalib , Mohamed I. Hassan Ali , Lei Zhou","doi":"10.1016/j.enconman.2025.119751","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal stability and spectral absorption challenges still limit concentrated PV/thermal efficiency. This study proposes a novel concentrated PV/thermal system with a hybrid spectral filter integrating a selective liquid filter and phase change material. Innovative numerical procedures are applied to perform 3D multiphysics modeling, uniquely accounting for variations in the optical behavior of phase change materials across phase transitions and wavelengths. Following model validation, performance analysis explores the effects of operating conditions and design parameters on yields, efficiencies, and market feasibility. The findings indicate that integrating phase change material with a selective liquid filter enhances thermal management, stabilizes PV temperatures, and improves spectral absorption, increasing overall yields. The proposed design achieves superior efficiency, with a 49.15 % energy conversion rate and a 240 % improvement over conventional concentrated PV systems.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119751"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002742","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal stability and spectral absorption challenges still limit concentrated PV/thermal efficiency. This study proposes a novel concentrated PV/thermal system with a hybrid spectral filter integrating a selective liquid filter and phase change material. Innovative numerical procedures are applied to perform 3D multiphysics modeling, uniquely accounting for variations in the optical behavior of phase change materials across phase transitions and wavelengths. Following model validation, performance analysis explores the effects of operating conditions and design parameters on yields, efficiencies, and market feasibility. The findings indicate that integrating phase change material with a selective liquid filter enhances thermal management, stabilizes PV temperatures, and improves spectral absorption, increasing overall yields. The proposed design achieves superior efficiency, with a 49.15 % energy conversion rate and a 240 % improvement over conventional concentrated PV systems.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.