A. P. Green, C. M. Elder, M. T. Bland, P. J. Tackley, P. K. Byrne
{"title":"No magmatic driving force for Europan sea-floor volcanism","authors":"A. P. Green, C. M. Elder, M. T. Bland, P. J. Tackley, P. K. Byrne","doi":"10.1038/s41550-025-02508-8","DOIUrl":null,"url":null,"abstract":"<p>The internal ocean of Jupiter’s moon Europa is thought to be a prime candidate for hosting extraterrestrial life. Europa’s silicate interior may contribute to habitability through the generation of reactants from hydrothermal activity, serpentinization or other geological processes occurring on or just below Europa’s sea floor. However, silicates are thought to melt at depths >100 km in Europa’s mantle, and it is unknown whether this magma can penetrate and travel through the moon’s probably thick, brittle lithosphere to erupt at the sea floor. We combine previous approaches for modelling melt generation in the Europan interior and lithospheric dyke transport to show that Europan sea-floor volcanism is strongly inhibited by its lithosphere. The low stress state of the Europan interior hinders the ability of dykes to penetrate through the lithosphere. Should dykes form, they penetrate <5% of the 200–250-km-thick lithosphere. Low mantle melt fractions (3–5%) drive a sluggish pore-space magma flow, leading to dyke influxes 10,000 times lower than that necessary for sea-floor eruption. These results strongly indicate that models of Europan habitability reliant on present-day volcanism at its sea floor are implausible.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"7 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02508-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The internal ocean of Jupiter’s moon Europa is thought to be a prime candidate for hosting extraterrestrial life. Europa’s silicate interior may contribute to habitability through the generation of reactants from hydrothermal activity, serpentinization or other geological processes occurring on or just below Europa’s sea floor. However, silicates are thought to melt at depths >100 km in Europa’s mantle, and it is unknown whether this magma can penetrate and travel through the moon’s probably thick, brittle lithosphere to erupt at the sea floor. We combine previous approaches for modelling melt generation in the Europan interior and lithospheric dyke transport to show that Europan sea-floor volcanism is strongly inhibited by its lithosphere. The low stress state of the Europan interior hinders the ability of dykes to penetrate through the lithosphere. Should dykes form, they penetrate <5% of the 200–250-km-thick lithosphere. Low mantle melt fractions (3–5%) drive a sluggish pore-space magma flow, leading to dyke influxes 10,000 times lower than that necessary for sea-floor eruption. These results strongly indicate that models of Europan habitability reliant on present-day volcanism at its sea floor are implausible.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.