Activating Solar Water Oxidation Ability of ZnFe2O4 Photoanodes through Quasi-reversible Oxygen-Sulfur Anion Exchange

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiyong Jiang, Xiaodi Zhu, Jun Bao
{"title":"Activating Solar Water Oxidation Ability of ZnFe2O4 Photoanodes through Quasi-reversible Oxygen-Sulfur Anion Exchange","authors":"Zhiyong Jiang,&nbsp;Xiaodi Zhu,&nbsp;Jun Bao","doi":"10.1002/adfm.202502549","DOIUrl":null,"url":null,"abstract":"<p>The octahedral structure motif in spinel oxides photoelectrodes is usually recognized as a crucial factor for charge carriers transportation, which can directly influence the performance of oxygen-related photoelectrochemical (PEC) reactions at the electrode/electrolyte interface (EEI). Here in this work, a quasi-reversible oxygen-sulfur (O-S) exchange strategy is provided through facile anion exchange reaction followed by photo-assisted cyclic voltammetry (photo-CV) treatment to manipulate the FeO<sub>6</sub> octahedral structure motif in spinel zinc ferrite (ZnFe<sub>2</sub>O<sub>4</sub>) photoanodes. The obtained ZnFe<sub>2</sub>O<sub>4–x</sub>S<sub>x</sub> photoanodes with FeO<sub>6−x</sub>S<sub>x</sub> units in bulk phase and activated FeO<sub>6</sub> units in surface region exhibit excellent PEC performance for water oxidation, delivering ≈2 orders of magnitude higher photocurrent density at 1.23 V vs. the reversible hydrogen electrode (V<sub>RHE</sub>) compared to ZnFe<sub>2</sub>O<sub>4</sub> photoanodes under AM 1.5G illumination. Additionally, the kinetics of water oxidation reaction on ZnFe<sub>2</sub>O<sub>4–x</sub>S<sub>x</sub> photoanodes is further improved upon loading NiFeO<sub>x</sub> cocatalyst, reaching a photocurrent density of 1.1 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub>, which ranks at the highest level among reported literature. This work opens up a new approach to facilitate the charge carriers’ transportation in spinel oxides and advances the solar water splitting performance of ZnFe<sub>2</sub>O<sub>4</sub> photoanodes for application in relevant PEC devices.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 35","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202502549","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The octahedral structure motif in spinel oxides photoelectrodes is usually recognized as a crucial factor for charge carriers transportation, which can directly influence the performance of oxygen-related photoelectrochemical (PEC) reactions at the electrode/electrolyte interface (EEI). Here in this work, a quasi-reversible oxygen-sulfur (O-S) exchange strategy is provided through facile anion exchange reaction followed by photo-assisted cyclic voltammetry (photo-CV) treatment to manipulate the FeO6 octahedral structure motif in spinel zinc ferrite (ZnFe2O4) photoanodes. The obtained ZnFe2O4–xSx photoanodes with FeO6−xSx units in bulk phase and activated FeO6 units in surface region exhibit excellent PEC performance for water oxidation, delivering ≈2 orders of magnitude higher photocurrent density at 1.23 V vs. the reversible hydrogen electrode (VRHE) compared to ZnFe2O4 photoanodes under AM 1.5G illumination. Additionally, the kinetics of water oxidation reaction on ZnFe2O4–xSx photoanodes is further improved upon loading NiFeOx cocatalyst, reaching a photocurrent density of 1.1 mA cm−2 at 1.23 VRHE, which ranks at the highest level among reported literature. This work opens up a new approach to facilitate the charge carriers’ transportation in spinel oxides and advances the solar water splitting performance of ZnFe2O4 photoanodes for application in relevant PEC devices.

Abstract Image

Abstract Image

准可逆氧硫阴离子交换激活ZnFe2O4光阳极的太阳水氧化能力
尖晶石氧化物光电极的八面体结构基序通常被认为是载流子输运的关键因素,它直接影响电极/电解质界面(EEI)上氧相关光电化学(PEC)反应的性能。本文研究了一种准可逆的氧-硫(O-S)交换策略,通过易阴离子交换反应和光辅助循环伏安法(photocv)处理来控制尖晶石铁酸锌(ZnFe2O4)光阳极中FeO6的八面体结构基序。所制备的体积相为FeO6−xSx单元、表面为活化FeO6单元的ZnFe2O4 - xSx光阳极在水氧化中表现出优异的PEC性能,在1.23 V时,在AM 1.5G照明下,与可逆氢电极(VRHE)相比,ZnFe2O4光阳极的光电流密度提高了约2个数量级。此外,在负载NiFeOx助催化剂后,ZnFe2O4-xSx光阳极上的水氧化反应动力学得到进一步改善,在1.23 VRHE下达到1.1 mA cm−2的光电流密度,在文献报道中排名最高。本研究为促进尖晶石氧化物中载流子的输运开辟了一条新途径,并提高了ZnFe2O4光阳极的太阳能水分解性能,可用于相关的PEC器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信