{"title":"Enantiomer-Dependent Uptake of Chiral Nanoparticles in Macrophages Modulates the Inflammatory Response through the NF-κB Pathway","authors":"Jinghua Hao, Yijin Tian, Jie Tang, Nali Zhu, Zhigang Li, Lingxiangyu Li, Yawei Wang, Guibin Jiang","doi":"10.1021/acs.est.4c12577","DOIUrl":null,"url":null,"abstract":"Infectious inflammation caused by pathogens or environmental pollutants remains a major global health issue. Therefore the development of novel strategies to efficaciously control infectious inflammation is urgently required. Nuclear factor-κB (NF-κB) as the central activator of pro-inflammatory genes plays a pivotal role in infectious inflammation. Here, nanoscale chirality was designed to modulate the inflammatory response through enantiomer-dependent blockade of the NF-κB signaling pathway. Chiral gold nanoparticles (AuNPs) with good cytocompatibility were prepared through a one-pot seedless method under wild conditions, showing efficacious alleviation of lipopolysaccharide (LPS)-induced inflammation in vitro and in vivo only by AuNPs with levorotatory chirality (L-AuNPs) rather than the dextrorotatory enantiomer (D-AuNPs). Mechanism investigation elucidated that lysosomal acidification of macrophages was inhibited through a high cellular uptake of L-AuNPs due to their weak interaction energy with cell membranes. Accordingly, the NF-κB rather than mitogen-activated protein kinase pathway was blocked by L-AuNPs through the selective inhibition of p65 phosphorylation, wherein the nuclear translocation of p65 was simultaneously depressed, so the secretion of pro-inflammatory mediators was reduced significantly. This study suggests that imparting chirality to nanoparticles can provide a novel protocol to efficaciously modulate health risks arising from infectious inflammation by improving the uptake of nanoparticles with anti-inflammatory activity.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"20 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12577","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Infectious inflammation caused by pathogens or environmental pollutants remains a major global health issue. Therefore the development of novel strategies to efficaciously control infectious inflammation is urgently required. Nuclear factor-κB (NF-κB) as the central activator of pro-inflammatory genes plays a pivotal role in infectious inflammation. Here, nanoscale chirality was designed to modulate the inflammatory response through enantiomer-dependent blockade of the NF-κB signaling pathway. Chiral gold nanoparticles (AuNPs) with good cytocompatibility were prepared through a one-pot seedless method under wild conditions, showing efficacious alleviation of lipopolysaccharide (LPS)-induced inflammation in vitro and in vivo only by AuNPs with levorotatory chirality (L-AuNPs) rather than the dextrorotatory enantiomer (D-AuNPs). Mechanism investigation elucidated that lysosomal acidification of macrophages was inhibited through a high cellular uptake of L-AuNPs due to their weak interaction energy with cell membranes. Accordingly, the NF-κB rather than mitogen-activated protein kinase pathway was blocked by L-AuNPs through the selective inhibition of p65 phosphorylation, wherein the nuclear translocation of p65 was simultaneously depressed, so the secretion of pro-inflammatory mediators was reduced significantly. This study suggests that imparting chirality to nanoparticles can provide a novel protocol to efficaciously modulate health risks arising from infectious inflammation by improving the uptake of nanoparticles with anti-inflammatory activity.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.