{"title":"An extension of Hertz’s formula for the stiffness of conformal spherical contacts","authors":"Alberto Betti, Paola Forte, Enrico Ciulli","doi":"10.26599/frict.2025.944113","DOIUrl":null,"url":null,"abstract":"<p>Hertz’s classical theory of contact requires the surfaces to be non-conformal. Despite of this, Hertzian formulas are often used also for conformal contacts as for instance for the evaluation of pivot stiffness in tilting pad journal bearings. In this paper, finite element simulations of conformal contacts between spherical elastic bodies are performed for different materials and geometry, in particular by varying the clearance. A first result is the introduction of a novel normalization which allows to calculate stiffness as a clearance-invariant function. Then, a novel model for stiffness is introduced. The model reduces back to Hertz’s theory in the non-conformal limit. The model requires fitting of three empirical parameters which depend on the boundary conditions and on the material properties. Analytical expressions for the parameters are provided for a subset of contact problems with a simple geometry and given material properties. More general formulas for the parameters will be developed in a future work.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"61 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.944113","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hertz’s classical theory of contact requires the surfaces to be non-conformal. Despite of this, Hertzian formulas are often used also for conformal contacts as for instance for the evaluation of pivot stiffness in tilting pad journal bearings. In this paper, finite element simulations of conformal contacts between spherical elastic bodies are performed for different materials and geometry, in particular by varying the clearance. A first result is the introduction of a novel normalization which allows to calculate stiffness as a clearance-invariant function. Then, a novel model for stiffness is introduced. The model reduces back to Hertz’s theory in the non-conformal limit. The model requires fitting of three empirical parameters which depend on the boundary conditions and on the material properties. Analytical expressions for the parameters are provided for a subset of contact problems with a simple geometry and given material properties. More general formulas for the parameters will be developed in a future work.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.