Eye-Drop Nano-Formulation of Catalase Self-Assembled with Thiolated Chitosan for Effective Treatment of Dry Eye Disease

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ming Shao, Yu Chai, Yutong Jiang, Xinyi Wu, Wenjie Xie, Jiayi Lu, Xuehui Fu, Yao He, Xiaofeng Zhang, Han Zhang, Zhuang Liu
{"title":"Eye-Drop Nano-Formulation of Catalase Self-Assembled with Thiolated Chitosan for Effective Treatment of Dry Eye Disease","authors":"Ming Shao, Yu Chai, Yutong Jiang, Xinyi Wu, Wenjie Xie, Jiayi Lu, Xuehui Fu, Yao He, Xiaofeng Zhang, Han Zhang, Zhuang Liu","doi":"10.1002/adma.202415353","DOIUrl":null,"url":null,"abstract":"Dry eye disease (DED), the most prevalent ophthalmological condition worldwide, can cause severe ocular discomfort and even visual impairment. Effective yet safe therapeutics for severe DED are still highly demanded. Herein, considering the important role of excessive reactive oxygen species (ROS) in triggering DED, an eye-drop nano-formulation of catalase (CAT) self-assembled with cysteine-modified chitosan (CS-Cys) is designed for DED treatment. Upon eye-drop administration of CS-Cys/CAT nanoparticles, CS-Cys can form disulfide bonds with abundant thiols in the mucin layer of the tear film, anchoring catalase to the corneal surface. Thus the excess ROS accumulated on the ocular surface can be effectively eliminated, resulting in a regulated tear microenvironment. In mouse and rabbit models, it is verified that CS-Cys/CAT eye drops can offer excellent therapeutic effects, especially in promoting the recovery of damaged epithelium and increasing tear secretion. Remarkably, CS-Cys/CAT eye drops showed notably better therapeutic performance than clinically used cyclosporin and dexamethasone, as well as several new DED drugs in clinical trials. Thus, the work presents a unique nanoparticulate eye-drop-based ocular delivery system to allow prolonged ocular retention of protein therapeutics, and such nanoformulation formulated by fully biocompatible/biodegradable components possesses significant translational potential for effective and safe DED treatment.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"183 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dry eye disease (DED), the most prevalent ophthalmological condition worldwide, can cause severe ocular discomfort and even visual impairment. Effective yet safe therapeutics for severe DED are still highly demanded. Herein, considering the important role of excessive reactive oxygen species (ROS) in triggering DED, an eye-drop nano-formulation of catalase (CAT) self-assembled with cysteine-modified chitosan (CS-Cys) is designed for DED treatment. Upon eye-drop administration of CS-Cys/CAT nanoparticles, CS-Cys can form disulfide bonds with abundant thiols in the mucin layer of the tear film, anchoring catalase to the corneal surface. Thus the excess ROS accumulated on the ocular surface can be effectively eliminated, resulting in a regulated tear microenvironment. In mouse and rabbit models, it is verified that CS-Cys/CAT eye drops can offer excellent therapeutic effects, especially in promoting the recovery of damaged epithelium and increasing tear secretion. Remarkably, CS-Cys/CAT eye drops showed notably better therapeutic performance than clinically used cyclosporin and dexamethasone, as well as several new DED drugs in clinical trials. Thus, the work presents a unique nanoparticulate eye-drop-based ocular delivery system to allow prolonged ocular retention of protein therapeutics, and such nanoformulation formulated by fully biocompatible/biodegradable components possesses significant translational potential for effective and safe DED treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信