Directional self-assembly of organic semi-type core-shell microwires for programmable visible-to-near-infrared waveguiding conversion

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-03-24 DOI:10.1016/j.chempr.2025.102497
Bin Wu, Ming-Peng Zhuo, Ying-Li Shi, Lin-Feng Gu, Yu-Dong Zhao, Yang Su, Yuan-Yuan Li, Hang Lu, Wei-Feng Li, Zuo-Shan Wang, Xue-Dong Wang
{"title":"Directional self-assembly of organic semi-type core-shell microwires for programmable visible-to-near-infrared waveguiding conversion","authors":"Bin Wu, Ming-Peng Zhuo, Ying-Li Shi, Lin-Feng Gu, Yu-Dong Zhao, Yang Su, Yuan-Yuan Li, Hang Lu, Wei-Feng Li, Zuo-Shan Wang, Xue-Dong Wang","doi":"10.1016/j.chempr.2025.102497","DOIUrl":null,"url":null,"abstract":"Organic topological structures integrating multi-color emission and waveguide for optical interconnects are of considerable significance in both scientific research and optoelectronic applications. However, limited success in organic near-infrared (NIR) emitters and difficult manipulation of intermolecular interactions lead to a severe restriction of the photon waveguide for optical communication. Herein, we have purposefully designed dibenzothiophene-based charge-transfer (CT) cocrystals with tunable NIR emission from 710 to 840 nm via finely increasing their aggregation closeness and CT interaction intensity. The controlled molecular stacking evolution from a loosely to a tightly mixed stack achieved a desired narrowed optical band gap of 1.8 eV. Furthermore, these CT cocrystals with a low optical loss coefficient of 0.077 dB/μm at 840 nm were introduced into NIR-emissive semi-type core-shell heterostructures, which realized effective energy transfer with a high conversion efficiency of 40.5% between visible and NIR emission. This strategy paves the way toward precise processing of photons with transmission wavelengths for integrated optoelectronics.","PeriodicalId":268,"journal":{"name":"Chem","volume":"59 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102497","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic topological structures integrating multi-color emission and waveguide for optical interconnects are of considerable significance in both scientific research and optoelectronic applications. However, limited success in organic near-infrared (NIR) emitters and difficult manipulation of intermolecular interactions lead to a severe restriction of the photon waveguide for optical communication. Herein, we have purposefully designed dibenzothiophene-based charge-transfer (CT) cocrystals with tunable NIR emission from 710 to 840 nm via finely increasing their aggregation closeness and CT interaction intensity. The controlled molecular stacking evolution from a loosely to a tightly mixed stack achieved a desired narrowed optical band gap of 1.8 eV. Furthermore, these CT cocrystals with a low optical loss coefficient of 0.077 dB/μm at 840 nm were introduced into NIR-emissive semi-type core-shell heterostructures, which realized effective energy transfer with a high conversion efficiency of 40.5% between visible and NIR emission. This strategy paves the way toward precise processing of photons with transmission wavelengths for integrated optoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信