Bin Wu, Ming-Peng Zhuo, Ying-Li Shi, Lin-Feng Gu, Yu-Dong Zhao, Yang Su, Yuan-Yuan Li, Hang Lu, Wei-Feng Li, Zuo-Shan Wang, Xue-Dong Wang
{"title":"Directional self-assembly of organic semi-type core-shell microwires for programmable visible-to-near-infrared waveguiding conversion","authors":"Bin Wu, Ming-Peng Zhuo, Ying-Li Shi, Lin-Feng Gu, Yu-Dong Zhao, Yang Su, Yuan-Yuan Li, Hang Lu, Wei-Feng Li, Zuo-Shan Wang, Xue-Dong Wang","doi":"10.1016/j.chempr.2025.102497","DOIUrl":null,"url":null,"abstract":"Organic topological structures integrating multi-color emission and waveguide for optical interconnects are of considerable significance in both scientific research and optoelectronic applications. However, limited success in organic near-infrared (NIR) emitters and difficult manipulation of intermolecular interactions lead to a severe restriction of the photon waveguide for optical communication. Herein, we have purposefully designed dibenzothiophene-based charge-transfer (CT) cocrystals with tunable NIR emission from 710 to 840 nm via finely increasing their aggregation closeness and CT interaction intensity. The controlled molecular stacking evolution from a loosely to a tightly mixed stack achieved a desired narrowed optical band gap of 1.8 eV. Furthermore, these CT cocrystals with a low optical loss coefficient of 0.077 dB/μm at 840 nm were introduced into NIR-emissive semi-type core-shell heterostructures, which realized effective energy transfer with a high conversion efficiency of 40.5% between visible and NIR emission. This strategy paves the way toward precise processing of photons with transmission wavelengths for integrated optoelectronics.","PeriodicalId":268,"journal":{"name":"Chem","volume":"59 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102497","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic topological structures integrating multi-color emission and waveguide for optical interconnects are of considerable significance in both scientific research and optoelectronic applications. However, limited success in organic near-infrared (NIR) emitters and difficult manipulation of intermolecular interactions lead to a severe restriction of the photon waveguide for optical communication. Herein, we have purposefully designed dibenzothiophene-based charge-transfer (CT) cocrystals with tunable NIR emission from 710 to 840 nm via finely increasing their aggregation closeness and CT interaction intensity. The controlled molecular stacking evolution from a loosely to a tightly mixed stack achieved a desired narrowed optical band gap of 1.8 eV. Furthermore, these CT cocrystals with a low optical loss coefficient of 0.077 dB/μm at 840 nm were introduced into NIR-emissive semi-type core-shell heterostructures, which realized effective energy transfer with a high conversion efficiency of 40.5% between visible and NIR emission. This strategy paves the way toward precise processing of photons with transmission wavelengths for integrated optoelectronics.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.