{"title":"Biomimetic Cascade Nanozyme Catalytic System for the Treatment of Lymph Node Metastasis in Gastric Cancer","authors":"Xi Luo, Yingguang Zhou, Kexiang Rao, Jingfeng Xiang, Shipeng Ning, Daoming Zhu, Guoxin Li, Hao Chen","doi":"10.1002/smll.202411576","DOIUrl":null,"url":null,"abstract":"Lymphatic metastasis of gastric cancer is a challenging issue in clinical practice. Recently, copper single‐atom nanozymes (SAZ) have gained tremendous attention due to its superior peroxidase (POD) activity that has good nonocatalytic tumor therapy (NCT) capabilities, and photothermal properties. Therefore, using a high‐expressing P‐selectin platelet membrane (PM) to encapsulate SAZ and cisplatin is proposed, forming PSC nanoparticles. Due to their exquisite nanoscale size and the unique structure of lymphatic vessels, PSC can highly target cancer cells in invasive primary tumors and metastatic lymph nodes that both highly express CD44. It is noteworthy that cisplatin can simultaneously perform chemotherapy and generate H₂O₂ under the action of NADPH oxidases (NOXs) that further enhance the catalytic activity of SAZ and increase intracellular reactive oxygen species (ROS) production. Both in vitro and vivo experiments have demonstrated the superior targeting and elimination capability of the PCS system in primary and metastatic tumor cells. In addition, transcriptomic analysis reveals that PSC + NIR induced apoptosis in MFC cells. This marks the first proposal of combining single‐atom nanozymes and chemotherapy drugs for dual‐targeting in gastric cancer and lymphatic metastasis, providing new insights into a challenging clinical issue in the treatment of gastric cancer lymphatic metastasis.","PeriodicalId":228,"journal":{"name":"Small","volume":"59 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411576","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphatic metastasis of gastric cancer is a challenging issue in clinical practice. Recently, copper single‐atom nanozymes (SAZ) have gained tremendous attention due to its superior peroxidase (POD) activity that has good nonocatalytic tumor therapy (NCT) capabilities, and photothermal properties. Therefore, using a high‐expressing P‐selectin platelet membrane (PM) to encapsulate SAZ and cisplatin is proposed, forming PSC nanoparticles. Due to their exquisite nanoscale size and the unique structure of lymphatic vessels, PSC can highly target cancer cells in invasive primary tumors and metastatic lymph nodes that both highly express CD44. It is noteworthy that cisplatin can simultaneously perform chemotherapy and generate H₂O₂ under the action of NADPH oxidases (NOXs) that further enhance the catalytic activity of SAZ and increase intracellular reactive oxygen species (ROS) production. Both in vitro and vivo experiments have demonstrated the superior targeting and elimination capability of the PCS system in primary and metastatic tumor cells. In addition, transcriptomic analysis reveals that PSC + NIR induced apoptosis in MFC cells. This marks the first proposal of combining single‐atom nanozymes and chemotherapy drugs for dual‐targeting in gastric cancer and lymphatic metastasis, providing new insights into a challenging clinical issue in the treatment of gastric cancer lymphatic metastasis.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.