Stefan Pinkert, Nina Farwig, Akito Y. Kawahara, Walter Jetz
{"title":"Global hotspots of butterfly diversity are threatened in a warming world","authors":"Stefan Pinkert, Nina Farwig, Akito Y. Kawahara, Walter Jetz","doi":"10.1038/s41559-025-02664-0","DOIUrl":null,"url":null,"abstract":"<p>Insects are in decline and threatened by climate change, yet lack of globally comprehensive information limits the understanding and management of this crisis. Here we uncover a strong concentration of butterfly diversity in rare and rapidly shrinking high-elevation climates. Integrating comprehensive phylogenetic and geographic range data for 12,119 species, we find that global centres of butterfly richness, range rarity and phylogenetic diversity are unusually concentrated in tropical and subtropical mountain systems. Two-thirds of the assessed species are primarily mountain dwelling and mountains hold 3.5 times more butterfly hotspots (top 5%) than lowlands. These hotspots only partially overlap with those of ants, terrestrial vertebrates and vascular plants (14–36%), while butterfly diversity is uniquely concentrated above 2,000 m elevation. We project that up to 64% of the temperature niche space of butterflies in tropical realms will erode by 2070, with the geographically restricted temperature conditions of mountains potentially turning these from refugia to traps for butterfly diversity. Our study identifies critical conservation priorities for butterflies and underscores the need for quantitative global assessments of at least select insect groups to help mitigate biodiversity loss in a rapidly warming world.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"9 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-025-02664-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insects are in decline and threatened by climate change, yet lack of globally comprehensive information limits the understanding and management of this crisis. Here we uncover a strong concentration of butterfly diversity in rare and rapidly shrinking high-elevation climates. Integrating comprehensive phylogenetic and geographic range data for 12,119 species, we find that global centres of butterfly richness, range rarity and phylogenetic diversity are unusually concentrated in tropical and subtropical mountain systems. Two-thirds of the assessed species are primarily mountain dwelling and mountains hold 3.5 times more butterfly hotspots (top 5%) than lowlands. These hotspots only partially overlap with those of ants, terrestrial vertebrates and vascular plants (14–36%), while butterfly diversity is uniquely concentrated above 2,000 m elevation. We project that up to 64% of the temperature niche space of butterflies in tropical realms will erode by 2070, with the geographically restricted temperature conditions of mountains potentially turning these from refugia to traps for butterfly diversity. Our study identifies critical conservation priorities for butterflies and underscores the need for quantitative global assessments of at least select insect groups to help mitigate biodiversity loss in a rapidly warming world.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.