Rajeev Kumar Rai, Rui Serra-Maia, Yingjie Shi, Peter Psarras, Aleksandra Vojvodic, Eric A Stach
{"title":"Enhanced mineral carbonation on surface functionalized MgO as a Proxy for mine tailings","authors":"Rajeev Kumar Rai, Rui Serra-Maia, Yingjie Shi, Peter Psarras, Aleksandra Vojvodic, Eric A Stach","doi":"10.1039/d4en00940a","DOIUrl":null,"url":null,"abstract":"The escalating demands of industrialization and development underscore the necessity for an efficient and scalable Carbon Capture and Storage (CCS) methodology. Mineral carbonation of MgO presents itself as a promising solution due to its considerable theoretical capacity for CO<small><sub>2</sub></small> adsorption. However, the sluggish kinetics of the carbonation process pose a significant challenge. Consequently, a comprehensive understanding of the structural and chemical alterations occurring during carbonation is imperative for material design. In this study, we conduct a thorough structural and chemical investigation of the MgO (sourced from different mine tailings) carbonation process using electron microscopic techniques. Our findings demonstrate that treating MgO with polar solvents enhances its degree of carbonation significantly, offering a promising avenue for improvement. Moreover, we observe a particle size dependency in MgO carbonation and note that the inclusion of additional materials, such as Si-based compounds, further accelerates the carbonation. Density functional theory (DFT) calculations provide insight into surface functionalization as a result of solvent treatment and its mechanistic effect on the origin of the enhanced carbonation of polar solvent-treated MgO, revealing a stronger interaction between CO<small><sub>2</sub></small> and the treated MgO (100) surface as compared to the non-polar solvent treated surfaces. These discoveries showcase an alternative approach for enhancing MgO carbonation, thereby offering a potential method for sequestering atmospheric CO<small><sub>2</sub></small> more effectively using mine waste rich in MgO.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"123 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00940a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating demands of industrialization and development underscore the necessity for an efficient and scalable Carbon Capture and Storage (CCS) methodology. Mineral carbonation of MgO presents itself as a promising solution due to its considerable theoretical capacity for CO2 adsorption. However, the sluggish kinetics of the carbonation process pose a significant challenge. Consequently, a comprehensive understanding of the structural and chemical alterations occurring during carbonation is imperative for material design. In this study, we conduct a thorough structural and chemical investigation of the MgO (sourced from different mine tailings) carbonation process using electron microscopic techniques. Our findings demonstrate that treating MgO with polar solvents enhances its degree of carbonation significantly, offering a promising avenue for improvement. Moreover, we observe a particle size dependency in MgO carbonation and note that the inclusion of additional materials, such as Si-based compounds, further accelerates the carbonation. Density functional theory (DFT) calculations provide insight into surface functionalization as a result of solvent treatment and its mechanistic effect on the origin of the enhanced carbonation of polar solvent-treated MgO, revealing a stronger interaction between CO2 and the treated MgO (100) surface as compared to the non-polar solvent treated surfaces. These discoveries showcase an alternative approach for enhancing MgO carbonation, thereby offering a potential method for sequestering atmospheric CO2 more effectively using mine waste rich in MgO.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis