Regioselective Oxidative Bromination of Arenes by Metal-Organic Framework Confined Mono-Bipyridyl Iron(III) Catalyst

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Rahul Kalita, Aditya Kumar, Poorvi Gupta, Bharti Rana, Bitan Sardar, Manav Chauhan, Biplab Ghosh, Yukti Monga, Kuntal Manna
{"title":"Regioselective Oxidative Bromination of Arenes by Metal-Organic Framework Confined Mono-Bipyridyl Iron(III) Catalyst","authors":"Rahul Kalita, Aditya Kumar, Poorvi Gupta, Bharti Rana, Bitan Sardar, Manav Chauhan, Biplab Ghosh, Yukti Monga, Kuntal Manna","doi":"10.1039/d5dt00443h","DOIUrl":null,"url":null,"abstract":"Oxidative bromination of arenes is an effective and environmentally friendly method for synthesizing bromoarenes. We have developed a highly robust zirconium-metal-organic framework (MOF)-supported mono bipyridyl-iron(III) chloride catalyst (bpy-UiO-FeCl3<small><sub></sub></small>) for oxidative bromination of arenes using H2<small><sub></sub></small>O2<small><sub></sub></small> as the oxidant and KBr as the bromine source. The bpy-UiO-FeCl3<small><sub></sub></small> catalyst exhibits high conversion rates for various substituted arenes, yielding significant amounts of bromoarenes with excellent regioselectivity, and recyclability under mild reaction conditions. The MOF-catalyst outperforms its homogeneous counterparts in terms of both activity and regioselectivity due to the stabilization of the mononuclear bipyridyl-iron(III) species within the active sites in the MOF's pores. Furthermore, the confinement of these active sites within the robust, well-defined, and uniform porous framework enhances the regioselectivity of the bromination through shape-selective catalysis. The mechanism of bpy-UiO-FeCl3<small><sub></sub></small> catalyzed oxidative bromination of arenes was thoroughly investigated by a combination of control experiments, spectroscopic analyses, and computational studies. These findings underscore the importance of MOFs in the development of heterogeneous catalysts based on earth-abundant metals for the sustainable synthesis of haloarenes.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00443h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative bromination of arenes is an effective and environmentally friendly method for synthesizing bromoarenes. We have developed a highly robust zirconium-metal-organic framework (MOF)-supported mono bipyridyl-iron(III) chloride catalyst (bpy-UiO-FeCl3) for oxidative bromination of arenes using H2O2 as the oxidant and KBr as the bromine source. The bpy-UiO-FeCl3 catalyst exhibits high conversion rates for various substituted arenes, yielding significant amounts of bromoarenes with excellent regioselectivity, and recyclability under mild reaction conditions. The MOF-catalyst outperforms its homogeneous counterparts in terms of both activity and regioselectivity due to the stabilization of the mononuclear bipyridyl-iron(III) species within the active sites in the MOF's pores. Furthermore, the confinement of these active sites within the robust, well-defined, and uniform porous framework enhances the regioselectivity of the bromination through shape-selective catalysis. The mechanism of bpy-UiO-FeCl3 catalyzed oxidative bromination of arenes was thoroughly investigated by a combination of control experiments, spectroscopic analyses, and computational studies. These findings underscore the importance of MOFs in the development of heterogeneous catalysts based on earth-abundant metals for the sustainable synthesis of haloarenes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信