High-pressure study of barium metavanadate monohydrate

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Daniel Errandonea, Javier Gonzalez-Platas, OUAHRANI Tarik, Fabio Piccinelli, Marco Bettinelli
{"title":"High-pressure study of barium metavanadate monohydrate","authors":"Daniel Errandonea, Javier Gonzalez-Platas, OUAHRANI Tarik, Fabio Piccinelli, Marco Bettinelli","doi":"10.1039/d5dt00423c","DOIUrl":null,"url":null,"abstract":"This study presents a single-crystal X-ray diffraction investigation of the high-pressure behavior of barium metavanadate monohydrate, BaV2O6·H2O, up to 7.1 GPa. These measurements were combined with high-pressure optical absorption measurements performed up to 10.1 GPa and with density-functional theory calculations. The X-ray diffraction analysis indicates that BaV2O6·H2O adopts an orthorhombic structure described by space group P212121 at ambient pressure. This structure maintains stability up to 8 GPa, in contrast to anhydrous BaV2O6 which undergoes a phase transition at 4 GPa. Throughout the pressure range examined, the compression of the crystal is highly anisotropic with the b-axis having a nearly zero linear compressibility. Additionally, our optical absorption measurements reveal that BaV2O6·H2O exhibits an indirect band gap that decreases from 4.62(5) eV at 0.03 GPa to 4.48(5) eV at 10.1 GPa. Density-functional theory calculations give similar results as the experiments and support that the decrease of the band-gap energy with pressure is caused by the enhancement of the hybridization between O 2p and V 3d state. We have also calculated the elastic constant. According to experiments and calculations BaV2O6·H2O is one of the most compressible vanadates with a bulk modulus of 33.0(5) GPa.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"3 2 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00423c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a single-crystal X-ray diffraction investigation of the high-pressure behavior of barium metavanadate monohydrate, BaV2O6·H2O, up to 7.1 GPa. These measurements were combined with high-pressure optical absorption measurements performed up to 10.1 GPa and with density-functional theory calculations. The X-ray diffraction analysis indicates that BaV2O6·H2O adopts an orthorhombic structure described by space group P212121 at ambient pressure. This structure maintains stability up to 8 GPa, in contrast to anhydrous BaV2O6 which undergoes a phase transition at 4 GPa. Throughout the pressure range examined, the compression of the crystal is highly anisotropic with the b-axis having a nearly zero linear compressibility. Additionally, our optical absorption measurements reveal that BaV2O6·H2O exhibits an indirect band gap that decreases from 4.62(5) eV at 0.03 GPa to 4.48(5) eV at 10.1 GPa. Density-functional theory calculations give similar results as the experiments and support that the decrease of the band-gap energy with pressure is caused by the enhancement of the hybridization between O 2p and V 3d state. We have also calculated the elastic constant. According to experiments and calculations BaV2O6·H2O is one of the most compressible vanadates with a bulk modulus of 33.0(5) GPa.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信