Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jinghui Liu, Tom Burkart, Alexander Ziepke, John Reinhard, Yu-Chen Chao, Tzer Han Tan, S. Zachary Swartz, Erwin Frey, Nikta Fakhri
{"title":"Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes","authors":"Jinghui Liu, Tom Burkart, Alexander Ziepke, John Reinhard, Yu-Chen Chao, Tzer Han Tan, S. Zachary Swartz, Erwin Frey, Nikta Fakhri","doi":"10.1038/s41567-025-02807-x","DOIUrl":null,"url":null,"abstract":"<p>Chemo-mechanical waves play a key role in force generation and long-range signal transmission in cells that dynamically change shape, for example, during cell division or morphogenesis. Reconstituting and controlling such chemically controlled cell deformations is a crucial but unsolved challenge for the development of synthetic cells. Here we present an optogenetic method to investigate the mechanism responsible for coordinating surface contraction waves that occur in oocytes of the starfish <i>Patiria miniata</i> during meiotic cell division. Using optogenetic stimuli, we create chemo-mechanical cortical excitations that are decoupled from meiotic cues and drive various shape deformations, ranging from local pinching to surface contraction waves and breakdown of the cell. A quantitative model entailing both chemical and geometry dynamics allows us to predict and explain the variety of mechanical responses to optogenetic stimuli. Finally, we qualitatively map the observed shape dynamics to understand how the versatility of intracellular protein dynamics can give rise to a broad range of mechanical phenotypes. More broadly, our results suggest a route towards real-time control over dynamical deformations in living organisms and can advance the design of synthetic cells and life-like cellular functions.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"25 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02807-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemo-mechanical waves play a key role in force generation and long-range signal transmission in cells that dynamically change shape, for example, during cell division or morphogenesis. Reconstituting and controlling such chemically controlled cell deformations is a crucial but unsolved challenge for the development of synthetic cells. Here we present an optogenetic method to investigate the mechanism responsible for coordinating surface contraction waves that occur in oocytes of the starfish Patiria miniata during meiotic cell division. Using optogenetic stimuli, we create chemo-mechanical cortical excitations that are decoupled from meiotic cues and drive various shape deformations, ranging from local pinching to surface contraction waves and breakdown of the cell. A quantitative model entailing both chemical and geometry dynamics allows us to predict and explain the variety of mechanical responses to optogenetic stimuli. Finally, we qualitatively map the observed shape dynamics to understand how the versatility of intracellular protein dynamics can give rise to a broad range of mechanical phenotypes. More broadly, our results suggest a route towards real-time control over dynamical deformations in living organisms and can advance the design of synthetic cells and life-like cellular functions.

Abstract Image

光诱导的皮质兴奋性揭示了海星卵母细胞的可编程形状动力学
化学机械波在动态改变形状的细胞中,例如在细胞分裂或形态发生过程中,在力的产生和远程信号的传递中起着关键作用。重建和控制这种化学控制的细胞变形是合成细胞发展的一个关键但尚未解决的挑战。在这里,我们提出了一种光遗传学方法来研究海星在减数分裂细胞分裂过程中发生的卵母细胞表面收缩波的协调机制。利用光遗传刺激,我们创造了化学-机械皮层刺激,这种刺激与减数分裂信号脱钩,并驱动各种形状变形,从局部挤压到表面收缩波和细胞破裂。包含化学和几何动力学的定量模型使我们能够预测和解释光遗传刺激的各种机械反应。最后,我们定性地绘制了观察到的形状动力学,以了解细胞内蛋白质动力学的多功能性如何引起广泛的机械表型。更广泛地说,我们的研究结果为实时控制生物体的动态变形提供了一条途径,并可以推进合成细胞和类生命细胞功能的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信