Monitoring single parameter evolution over the course of interferogram acquisition in FTIR systems: Application to gas leak measurement

IF 2.3 3区 物理与天体物理 Q2 OPTICS
David Santalices , Juan Meléndez , Susana Briz
{"title":"Monitoring single parameter evolution over the course of interferogram acquisition in FTIR systems: Application to gas leak measurement","authors":"David Santalices ,&nbsp;Juan Meléndez ,&nbsp;Susana Briz","doi":"10.1016/j.jqsrt.2025.109429","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel methodology for retrieving the temporal evolution of a single physical parameter throughout the course of measurements conducted with imaging-FTIR systems. Rather than operating in the spectral domain, the proposed approach performs parameter fitting directly in the interferogram (i.e., the time or Optical Path Difference (OPD) domain). The method is based on a linearization of the incoming radiance, formulated as a function of a single parameter. This enables the decomposition of the interferogram into an average component and a fluctuating component. The calculation of the derivative of this component with respect to the parameter of interest makes it possible to retrieve the instantaneous value of the parameter. Validation is conducted via numerical simulations and subsequently applied to a real-world scenario involving a gas leak, where the fluctuating parameter is the column density of the gas. By achieving temporal resolution within a single measurement, this methodology addresses the inherent temporal resolution limitations of imaging FTIR systems. These advancements significantly enhance the applicability of FTIR systems for studying the temporal dynamics of scenarios requiring high temporal resolution.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"339 ","pages":"Article 109429"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325000913","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel methodology for retrieving the temporal evolution of a single physical parameter throughout the course of measurements conducted with imaging-FTIR systems. Rather than operating in the spectral domain, the proposed approach performs parameter fitting directly in the interferogram (i.e., the time or Optical Path Difference (OPD) domain). The method is based on a linearization of the incoming radiance, formulated as a function of a single parameter. This enables the decomposition of the interferogram into an average component and a fluctuating component. The calculation of the derivative of this component with respect to the parameter of interest makes it possible to retrieve the instantaneous value of the parameter. Validation is conducted via numerical simulations and subsequently applied to a real-world scenario involving a gas leak, where the fluctuating parameter is the column density of the gas. By achieving temporal resolution within a single measurement, this methodology addresses the inherent temporal resolution limitations of imaging FTIR systems. These advancements significantly enhance the applicability of FTIR systems for studying the temporal dynamics of scenarios requiring high temporal resolution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信