Reactive Hydrogen Species Behaviors on Pd/TiN: In situ SERS Guided Regulation for Chemoselective Hydrogenation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoling Zhang, Qiushi Shen, Xinyu Li, Li Wen, Jiefang Sun, Jingfu Liu, Chunyang Liao, Sijin Liu, Guibin Jiang, Rui Liu
{"title":"Reactive Hydrogen Species Behaviors on Pd/TiN: In situ SERS Guided Regulation for Chemoselective Hydrogenation","authors":"Xiaoling Zhang, Qiushi Shen, Xinyu Li, Li Wen, Jiefang Sun, Jingfu Liu, Chunyang Liao, Sijin Liu, Guibin Jiang, Rui Liu","doi":"10.1002/anie.202503279","DOIUrl":null,"url":null,"abstract":"Uncovering the H2 dissociation and H‐spillover behaviors of the generated reactive hydrogen species on catalyst surfaces is crucial for achieving efficient and chemoselective hydrogenation. However, those behaviors remain largely elusive given the challenges of directly observing H atoms, the smallest atoms in the element table. Herein, we explored the Pd site–specific D2 cleavage and the H‐spillover behaviors of dissociated D on the titanium nitride (TiN) support via in situ surface‐enhanced Raman spectroscopically (SERS). Besides facilitated forming Pd single atom (Pd1), fully exposed Pd cluster (Pdn) and Pd nanoparticles, dissociated D2 on Pd sites (indicated by νPd–D at 1,800 cm‐1), spillover to TiN, and formation of the N–D bond (indicated by νN–D at 2,400 cm‐1) were spectroscopically traceable. Combined with density functional theory (DFT) calculation, Pdn is identified as the most favorable site for the provision of reactive H through hydrogen spillover. Moreover, we propose νPd‐D and the νN‐D/νPd‐D ratio as the index to relative amounts of Pd1 and Pdn sites, respectively, and develop an in situ SERS‐based method to study the synthesis–structure–activity relationship of Pd/TiN catalyst with an optimized structure for chemoselective hydrogenation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"59 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uncovering the H2 dissociation and H‐spillover behaviors of the generated reactive hydrogen species on catalyst surfaces is crucial for achieving efficient and chemoselective hydrogenation. However, those behaviors remain largely elusive given the challenges of directly observing H atoms, the smallest atoms in the element table. Herein, we explored the Pd site–specific D2 cleavage and the H‐spillover behaviors of dissociated D on the titanium nitride (TiN) support via in situ surface‐enhanced Raman spectroscopically (SERS). Besides facilitated forming Pd single atom (Pd1), fully exposed Pd cluster (Pdn) and Pd nanoparticles, dissociated D2 on Pd sites (indicated by νPd–D at 1,800 cm‐1), spillover to TiN, and formation of the N–D bond (indicated by νN–D at 2,400 cm‐1) were spectroscopically traceable. Combined with density functional theory (DFT) calculation, Pdn is identified as the most favorable site for the provision of reactive H through hydrogen spillover. Moreover, we propose νPd‐D and the νN‐D/νPd‐D ratio as the index to relative amounts of Pd1 and Pdn sites, respectively, and develop an in situ SERS‐based method to study the synthesis–structure–activity relationship of Pd/TiN catalyst with an optimized structure for chemoselective hydrogenation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信