Integrating multimodal data to understand cortical circuit architecture and function

IF 21.2 1区 医学 Q1 NEUROSCIENCES
Anton Arkhipov, Nuno da Costa, Saskia de Vries, Trygve Bakken, Corbett Bennett, Amy Bernard, Jim Berg, Michael Buice, Forrest Collman, Tanya Daigle, Marina Garrett, Nathan Gouwens, Peter A. Groblewski, Julie Harris, Michael Hawrylycz, Rebecca Hodge, Tim Jarsky, Brian Kalmbach, Jerome Lecoq, Brian Lee, Ed Lein, Boaz Levi, Stefan Mihalas, Lydia Ng, Shawn Olsen, Clay Reid, Joshua H. Siegle, Staci Sorensen, Bosiljka Tasic, Carol Thompson, Jonathan T. Ting, Cindy van Velthoven, Shenqin Yao, Zizhen Yao, Christof Koch, Hongkui Zeng
{"title":"Integrating multimodal data to understand cortical circuit architecture and function","authors":"Anton Arkhipov, Nuno da Costa, Saskia de Vries, Trygve Bakken, Corbett Bennett, Amy Bernard, Jim Berg, Michael Buice, Forrest Collman, Tanya Daigle, Marina Garrett, Nathan Gouwens, Peter A. Groblewski, Julie Harris, Michael Hawrylycz, Rebecca Hodge, Tim Jarsky, Brian Kalmbach, Jerome Lecoq, Brian Lee, Ed Lein, Boaz Levi, Stefan Mihalas, Lydia Ng, Shawn Olsen, Clay Reid, Joshua H. Siegle, Staci Sorensen, Bosiljka Tasic, Carol Thompson, Jonathan T. Ting, Cindy van Velthoven, Shenqin Yao, Zizhen Yao, Christof Koch, Hongkui Zeng","doi":"10.1038/s41593-025-01904-7","DOIUrl":null,"url":null,"abstract":"In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function. This paper discusses how experimental and computational studies integrating multimodal data, such as RNA expression, connectivity and neural activity, are advancing our understanding of the architecture, mechanisms and function of cortical circuits.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 4","pages":"717-730"},"PeriodicalIF":21.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-025-01904-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function. This paper discusses how experimental and computational studies integrating multimodal data, such as RNA expression, connectivity and neural activity, are advancing our understanding of the architecture, mechanisms and function of cortical circuits.

Abstract Image

Abstract Image

整合多模态数据以了解皮质电路的结构和功能
近年来,新技术有了巨大的发展,这些新技术可以在前所未有的细节水平上对神经系统的不同特征进行大规模研究。越来越多的趋势是使用这些新技术的组合来确定不同模式之间的直接联系。从这个角度来看,我们关注的是小鼠视觉皮层,因为这是一个模型系统,在整合多模态数据以促进理解方面取得了很大进展。我们回顾了几种方法,这些方法可以整合有关皮层细胞类型的各种特性、脑区域水平上的连通性、细胞类型和单个细胞以及体内功能神经活动的数据。计算和理论在分析和系统建模数据方面日益重要的贡献也得到了强调。随着数据、工具和模型的开放共享,综合方法是现代神经科学中提高我们对大脑结构、机制和功能的理解的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信