Michelle F. Griffin, Jennifer B. Parker, Ruth Tevlin, Norah E. Liang, Caleb Valencia, Annah Morgan, Maxwell Kuhnert, Mauricio Downer, Emily L. Meany, Jason L. Guo, Dominic Henn, Renato S. Navarro, Kerry Shefren, Dung Nguyen, Geoffrey C. Gurtner, Sarah C. Heilshorn, Charles K. F. Chan, Michael Januszyk, Eric A. Appel, Arash Momeni, Derrick C. Wan, Michael T. Longaker
{"title":"Osteopontin attenuates the foreign-body response to silicone implants","authors":"Michelle F. Griffin, Jennifer B. Parker, Ruth Tevlin, Norah E. Liang, Caleb Valencia, Annah Morgan, Maxwell Kuhnert, Mauricio Downer, Emily L. Meany, Jason L. Guo, Dominic Henn, Renato S. Navarro, Kerry Shefren, Dung Nguyen, Geoffrey C. Gurtner, Sarah C. Heilshorn, Charles K. F. Chan, Michael Januszyk, Eric A. Appel, Arash Momeni, Derrick C. Wan, Michael T. Longaker","doi":"10.1038/s41551-025-01361-4","DOIUrl":null,"url":null,"abstract":"<p>The inflammatory process resulting in the fibrotic encapsulation of implants has been well studied. However, how acellular dermal matrix (ADM) used in breast reconstruction elicits an attenuated foreign-body response (FBR) remains unclear. Here, by leveraging single-cell RNA-sequencing and proteomic data from pairs of fibrotically encapsulated specimens (bare silicone and silicone wrapped with ADM) collected from individuals undergoing breast reconstruction, we show that high levels of the extracellular-matrix protein osteopontin are associated with the use of ADM as a silicone wrapping. In mice with osteopontin knocked out, FBR attenuation by ADM-coated implants was abrogated. In wild-type mice, the sustained release of recombinant osteopontin from a hydrogel placed adjacent to a silicone implant attenuated the FBR in the absence of ADM. Our findings suggest strategies for the further minimization of the FBR.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"21 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01361-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammatory process resulting in the fibrotic encapsulation of implants has been well studied. However, how acellular dermal matrix (ADM) used in breast reconstruction elicits an attenuated foreign-body response (FBR) remains unclear. Here, by leveraging single-cell RNA-sequencing and proteomic data from pairs of fibrotically encapsulated specimens (bare silicone and silicone wrapped with ADM) collected from individuals undergoing breast reconstruction, we show that high levels of the extracellular-matrix protein osteopontin are associated with the use of ADM as a silicone wrapping. In mice with osteopontin knocked out, FBR attenuation by ADM-coated implants was abrogated. In wild-type mice, the sustained release of recombinant osteopontin from a hydrogel placed adjacent to a silicone implant attenuated the FBR in the absence of ADM. Our findings suggest strategies for the further minimization of the FBR.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.