Zeyan Liu, Bosi Peng, Yu-Han Joseph Tsai, Ao Zhang, Mingjie Xu, Wenjie Zang, XingXu Yan, Li Xing, Xiaoqing Pan, Xiangfeng Duan, Yu Huang
{"title":"Pt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for heavy-duty fuel cell applications","authors":"Zeyan Liu, Bosi Peng, Yu-Han Joseph Tsai, Ao Zhang, Mingjie Xu, Wenjie Zang, XingXu Yan, Li Xing, Xiaoqing Pan, Xiangfeng Duan, Yu Huang","doi":"10.1038/s41565-025-01895-3","DOIUrl":null,"url":null,"abstract":"<p>Proton exchange membrane fuel cells feature considerable scalability advantages over lithium-ion batteries for heavy-duty-vehicle applications. The different driving behaviours and operating conditions of heavy-duty vehicles pose challenging requirements, particularly on fuel cell lifetime and efficiency. Here we report the design of a graphene-nanopocket-protected, pore-confined and electrochemically accessible Pt nanocatalyst supported on Ketjenblack carbon for heavy-duty-vehicle applications. The membrane electrode assembly made from these nanocatalysts delivers an initial mass activity of 0.74 A mg<sub>Pt</sub><sup>–1</sup> and a high rated power density of 1.08 W cm<sup>–2</sup>, as well as extraordinary long-term durability with an ultrasmall rated power loss of 1.1% after 90,000 aggressive square-wave cycles. The remarkable activity and durability throughout the operation conditions promise an unprecedentedly long fuel cell lifetime of over 200,000 h and high peak efficiency of 71.9%, making it highly attractive for emerging heavy-duty fuel cell applications.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"46 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01895-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane fuel cells feature considerable scalability advantages over lithium-ion batteries for heavy-duty-vehicle applications. The different driving behaviours and operating conditions of heavy-duty vehicles pose challenging requirements, particularly on fuel cell lifetime and efficiency. Here we report the design of a graphene-nanopocket-protected, pore-confined and electrochemically accessible Pt nanocatalyst supported on Ketjenblack carbon for heavy-duty-vehicle applications. The membrane electrode assembly made from these nanocatalysts delivers an initial mass activity of 0.74 A mgPt–1 and a high rated power density of 1.08 W cm–2, as well as extraordinary long-term durability with an ultrasmall rated power loss of 1.1% after 90,000 aggressive square-wave cycles. The remarkable activity and durability throughout the operation conditions promise an unprecedentedly long fuel cell lifetime of over 200,000 h and high peak efficiency of 71.9%, making it highly attractive for emerging heavy-duty fuel cell applications.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.