Spatial and Chemical Complexity in the W75N Star-forming Region

Morgan M. Giese, Will E. Thompson, Dariusz C. Lis and Susanna L. Widicus Weaver
{"title":"Spatial and Chemical Complexity in the W75N Star-forming Region","authors":"Morgan M. Giese, Will E. Thompson, Dariusz C. Lis and Susanna L. Widicus Weaver","doi":"10.3847/1538-4357/adb62d","DOIUrl":null,"url":null,"abstract":"We present the analysis of NOEMA interferometric observations of the high-mass star-forming region W75N(B) with a focus on molecular composition and distribution of prebiotic molecules in the source’s multiple cores. Over 20 molecules are identified across the region, with many being fit for column density, rotational temperature, spectral line FWHM, and vlsr. This work includes the first known detection and initial analysis of complex organic molecules in the MM2 and MM3 regions. Furthermore, parameter maps were created from the six molecules that were well fit across multiple regions. The molecular emission was imaged and correlated across different molecules and the continuum to reveal structural features. From the spatial and spectral analysis of the MM1 region, these results concur with those from other studies showing that there is a difference in chemical composition between the MM1a and MM1b regions, with sulfur-bearing molecules tracing MM1a and organic molecules tracing MM1b. The molecular emission imaged toward the MM3 region reveals two peaks, possibly indicating the presence of multiple young stellar objects. These results provide detailed quantitative information about the physical parameters and distributions of molecules in this source. Additionally, these results are part of a follow-up of a single-dish survey of multiple star-forming regions and are discussed in this context.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adb62d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the analysis of NOEMA interferometric observations of the high-mass star-forming region W75N(B) with a focus on molecular composition and distribution of prebiotic molecules in the source’s multiple cores. Over 20 molecules are identified across the region, with many being fit for column density, rotational temperature, spectral line FWHM, and vlsr. This work includes the first known detection and initial analysis of complex organic molecules in the MM2 and MM3 regions. Furthermore, parameter maps were created from the six molecules that were well fit across multiple regions. The molecular emission was imaged and correlated across different molecules and the continuum to reveal structural features. From the spatial and spectral analysis of the MM1 region, these results concur with those from other studies showing that there is a difference in chemical composition between the MM1a and MM1b regions, with sulfur-bearing molecules tracing MM1a and organic molecules tracing MM1b. The molecular emission imaged toward the MM3 region reveals two peaks, possibly indicating the presence of multiple young stellar objects. These results provide detailed quantitative information about the physical parameters and distributions of molecules in this source. Additionally, these results are part of a follow-up of a single-dish survey of multiple star-forming regions and are discussed in this context.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信