Anna C. Childs, Alexa P. S. Hua, Rebecca G. Martin, Chao-Chin Yang, 朝欽 楊 and Aaron M. Geller
{"title":"Observational Signatures of a Previous Dynamical Instability in Multi-planet M-dwarf Systems","authors":"Anna C. Childs, Alexa P. S. Hua, Rebecca G. Martin, Chao-Chin Yang, 朝欽 楊 and Aaron M. Geller","doi":"10.3847/1538-4357/adbb53","DOIUrl":null,"url":null,"abstract":"We identify observational signatures suggesting a history of dynamical instability in 26 out of 34 M-dwarf multi-planet systems containing no large planets. These systems may have primarily formed in a gas-rich environment, potentially hosted more planets, and were more compact. We extend previous simulations of the formation of the TRAPPIST-1 system to 100 Myr to test the stability of these systems without gas. We find that the absence of a strong mean motion resonance in the innermost planet pair and the absence of three-body resonances throughout the system are likely to result in the merging and ejection of planets after the gas disk disperses. The runs that experience such an instability tend to produce final systems with lower multiplicities, period ratios larger than two, increased orbital spacings, higher planetary angular momentum deficits, and slightly smaller mass ratios between adjacent planets. Remarkably, we find these same trends in the observations of M-dwarf multi-planet systems containing no large planets. Our work allows us to identify specific systems that may have experienced an instability, and it suggests that only ∼25% of these systems formed in their current observed state, while most systems were likely more compact and multiplicitous earlier in time. Previous research indicates that planets that have experienced a late-stage giant impact may potentially be more habitable than those that did not. With this in mind, we suggest systems around M-dwarfs that contain period ratios larger than two be given priority in the search for habitable worlds.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adbb53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We identify observational signatures suggesting a history of dynamical instability in 26 out of 34 M-dwarf multi-planet systems containing no large planets. These systems may have primarily formed in a gas-rich environment, potentially hosted more planets, and were more compact. We extend previous simulations of the formation of the TRAPPIST-1 system to 100 Myr to test the stability of these systems without gas. We find that the absence of a strong mean motion resonance in the innermost planet pair and the absence of three-body resonances throughout the system are likely to result in the merging and ejection of planets after the gas disk disperses. The runs that experience such an instability tend to produce final systems with lower multiplicities, period ratios larger than two, increased orbital spacings, higher planetary angular momentum deficits, and slightly smaller mass ratios between adjacent planets. Remarkably, we find these same trends in the observations of M-dwarf multi-planet systems containing no large planets. Our work allows us to identify specific systems that may have experienced an instability, and it suggests that only ∼25% of these systems formed in their current observed state, while most systems were likely more compact and multiplicitous earlier in time. Previous research indicates that planets that have experienced a late-stage giant impact may potentially be more habitable than those that did not. With this in mind, we suggest systems around M-dwarfs that contain period ratios larger than two be given priority in the search for habitable worlds.